All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.aliasi.matrix.PolynomialKernel Maven / Gradle / Ivy

Go to download

This is the original Lingpipe: http://alias-i.com/lingpipe/web/download.html There were not made any changes to the source code.

The newest version!
/*
 * LingPipe v. 4.1.0
 * Copyright (C) 2003-2011 Alias-i
 *
 * This program is licensed under the Alias-i Royalty Free License
 * Version 1 WITHOUT ANY WARRANTY, without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the Alias-i
 * Royalty Free License Version 1 for more details.
 *
 * You should have received a copy of the Alias-i Royalty Free License
 * Version 1 along with this program; if not, visit
 * http://alias-i.com/lingpipe/licenses/lingpipe-license-1.txt or contact
 * Alias-i, Inc. at 181 North 11th Street, Suite 401, Brooklyn, NY 11211,
 * +1 (718) 290-9170.
 */

package com.aliasi.matrix;

import com.aliasi.util.AbstractExternalizable;

import java.io.IOException;
import java.io.ObjectInput;
import java.io.ObjectOutput;
import java.io.Serializable;

/**
 * A PolynomialKernel provides a dot product over a fixed
 * degree polynomial basis expansion of a vector.
 *
 * 

The polynomial kernel of degree d over vectors * v1 and v2 is defined in terms of * underlying vector dot products: * *

 * kernel(v1,v2) = (1 + v1 * v2)d
* * where v1 * v2 is shorthand for the method call * v1.dotProduct(v2). * *

Serialization

* *

A polynomial kernel may be serialized. * *

Background Reading

* *

A thorough discussion of kernel functions and kernel-based * classifiers may be found in: * *

    *
  • Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2001. * The Elements of Statistical Learning. Springer-Verlag. *
  • *
* * @author Bob Carpenter * @version 3.8 * @since LingPipe3.1 */ public class PolynomialKernel implements KernelFunction, Serializable { static final long serialVersionUID = 2807317510032521328L; private final int mDegree; /** * Construct a polynomial kernel function of the specified degree. * * @param degree Degree of the polynomial kernel. */ public PolynomialKernel(int degree) { mDegree = degree; } /** * Returns the result of applying the polynomial kernel of * this class's degree to the specified vectors. * * @param v1 First vector. * @param v2 Second vector. * @return Polynomial kernel function applied to the two vectors. * @throws IllegalArgumentException If the vectors are not of the * same dimensionality. */ public double proximity(Vector v1, Vector v2) { return power(1.0 + v1.dotProduct(v2)); } double power(double base) { switch (mDegree) { case 0: return 1.0; case 1: return base; case 2: return base * base; case 3: return base * base * base; case 4: return base * base * base * base; default: return java.lang.Math.pow(base,mDegree); } } /** * Returns a string-based representation of this kernel * function, including the kernel type and degree. * * @return A string representing this kernel. */ @Override public String toString() { return "PolynomialKernel(" + mDegree + ")"; } Object writeReplace() { return new Externalizer(mDegree); } static class Externalizer extends AbstractExternalizable { static final long serialVersionUID = 4795059467534365487L; final int mDegree; public Externalizer() { this(-1); } public Externalizer(int degree) { mDegree = degree; } @Override public void writeExternal(ObjectOutput out) throws IOException { out.writeInt(mDegree); } @Override public Object read(ObjectInput in) throws IOException { int degree = in.readInt(); return new PolynomialKernel(degree); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy