com.aliasi.test.unit.stats.MultivariateEstimatorTest Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of aliasi-lingpipe Show documentation
Show all versions of aliasi-lingpipe Show documentation
This is the original Lingpipe:
http://alias-i.com/lingpipe/web/download.html
There were not made any changes to the source code.
package com.aliasi.test.unit.stats;
import com.aliasi.stats.MultivariateDistribution;
import com.aliasi.stats.MultivariateEstimator;
import com.aliasi.stats.MultivariateConstant;
import org.junit.Test;
import static junit.framework.Assert.assertEquals;
import java.io.*;
public class MultivariateEstimatorTest {
@Test
public void testDecrement() {
MultivariateEstimator me = new MultivariateEstimator();
me.train("a",2);
me.train("b",3);
me.train("c",2);
me.train("c",2);
assertEquals(4,me.getCount("c"));
assertEquals(4.0/9.0,me.probability(me.outcome("c")),
0.001);
me.resetCount("c");
assertEquals(0,me.getCount("c"));
assertEquals(3.0/5.0,
me.probability(me.outcome("b")),
0.0001);
}
@Test
public void testOne() throws ClassNotFoundException, IOException {
MultivariateEstimator me = new MultivariateEstimator();
for (int i = 0; i < 10; ++i)
me.train(Integer.toString(i),1);
assertDistro(me);
ByteArrayOutputStream bytesOut = new ByteArrayOutputStream();
ObjectOutputStream objOut = new ObjectOutputStream(bytesOut);
me.compileTo(objOut);
byte[] bytes = bytesOut.toByteArray();
ByteArrayInputStream bytesIn = new ByteArrayInputStream(bytes);
ObjectInputStream objIn = new ObjectInputStream(bytesIn);
MultivariateConstant mvc
= (MultivariateConstant) objIn.readObject();
assertDistro(mvc);
}
public void assertDistro(MultivariateDistribution distro) {
assertEquals(0l,distro.minOutcome());
assertEquals(9l,distro.maxOutcome());
assertEquals(10,distro.numDimensions());
assertEquals(.50,distro.cumulativeProbabilityLess(4l),0.001);
assertEquals(.00,distro.cumulativeProbabilityLess(-1l),0.001);
assertEquals(1.00,distro.cumulativeProbabilityLess(9l),0.001);
assertEquals(1.00,distro.cumulativeProbabilityLess(20l),0.001);
assertEquals(.50,distro.cumulativeProbabilityGreater(5l),0.001);
assertEquals(.00,distro.cumulativeProbabilityGreater(10l),0.001);
assertEquals(1.00,distro.cumulativeProbabilityGreater(0l),0.001);
assertEquals(1.00,distro.cumulativeProbabilityGreater(-20l),0.001);
assertEquals(.50,distro.cumulativeProbability(1l,5l),0.001);
assertEquals(.50,distro.cumulativeProbability(-3l,4l),0.001);
assertEquals(.50,distro.cumulativeProbability(-3l,4l),0.001);
assertEquals(.00,distro.cumulativeProbability(-3l,-4l),0.001);
assertEquals(1.00,distro.cumulativeProbability(-3l,15l),0.001);
assertEquals(1.00,distro.cumulativeProbability(0l,9l),0.001);
assertEquals(.10,distro.probability(0l),0.0001);
assertEquals(.10,distro.probability(5l),0.0001);
assertEquals(.10,distro.probability(9l),0.0001);
assertEquals(.00,distro.probability(17l),0.0001);
assertEquals(com.aliasi.util.Math.log2(.10),
distro.log2Probability(0l),0.0001);
assertEquals(com.aliasi.util.Math.log2(.10),
distro.log2Probability(5l),0.0001);
assertEquals(com.aliasi.util.Math.log2(.10),
distro.log2Probability(9l),0.0001);
assertEquals(com.aliasi.util.Math.log2(.00),
distro.log2Probability(17l),0.0001);
double mean = (10.0*9.0/2.0)/10.0;
double variance = 0.0;
for (int i = 0; i < 10; ++i) {
double diff = mean - (double)i;
variance += diff*diff;
}
variance /= 10.0;
assertEquals(mean,distro.mean(),0.0001);
assertEquals(variance,distro.variance(),0.0001);
double entropy = 0.0;
for (int i = 0; i <= 9; ++i)
entropy += -distro.probability(i) * distro.log2Probability(i);
assertEquals(entropy,distro.entropy(),0.0001);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy