All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cc.mallet.classify.tui.Csv2Classify Maven / Gradle / Ivy

Go to download

MALLET is a Java-based package for statistical natural language processing, document classification, clustering, topic modeling, information extraction, and other machine learning applications to text.

The newest version!
/* Copyright (C) 2002 Univ. of Massachusetts Amherst, Computer Science Dept.
   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
   http://www.cs.umass.edu/~mccallum/mallet
   This software is provided under the terms of the Common Public License,
   version 1.0, as published by http://www.opensource.org.  For further
   information, see the file `LICENSE' included with this distribution. */

package cc.mallet.classify.tui;

import java.util.Iterator;
import java.util.logging.*;
import java.util.regex.*;
import java.io.*;
import java.nio.charset.Charset;

import cc.mallet.classify.*;
import cc.mallet.pipe.iterator.*;
import cc.mallet.types.*;
import cc.mallet.util.*;

/**
 * Command line tool for classifying a sequence of  
 *  instances directly from text input, without
 *  creating an instance list.
 *  

* * @author David Mimno * @author Gregory Druck */ public class Csv2Classify { private static Logger logger = MalletLogger.getLogger(Csv2Classify.class.getName()); static CommandOption.File inputFile = new CommandOption.File (Csv2Classify.class, "input", "FILE", true, null, "The file containing data to be classified, one instance per line", null); static CommandOption.File outputFile = new CommandOption.File (Csv2Classify.class, "output", "FILE", true, new File("output"), "Write predictions to this file; Using - indicates stdout.", null); static CommandOption.String lineRegex = new CommandOption.String (Csv2Classify.class, "line-regex", "REGEX", true, "^(\\S*)[\\s,]*(.*)$", "Regular expression containing regex-groups for label, name and data.", null); static CommandOption.Integer nameOption = new CommandOption.Integer (Csv2Classify.class, "name", "INTEGER", true, 1, "The index of the group containing the instance name.\n" + " Use 0 to indicate that the name field is not used.", null); static CommandOption.Integer dataOption = new CommandOption.Integer (Csv2Classify.class, "data", "INTEGER", true, 2, "The index of the group containing the data.", null); static CommandOption.File classifierFile = new CommandOption.File (Csv2Classify.class, "classifier", "FILE", true, new File("classifier"), "Use the pipe and alphabets from a previously created vectors file.\n" + " Allows the creation, for example, of a test set of vectors that are\n" + " compatible with a previously created set of training vectors", null); static CommandOption.String encoding = new CommandOption.String (Csv2Classify.class, "encoding", "STRING", true, Charset.defaultCharset().displayName(), "Character encoding for input file", null); public static void main (String[] args) throws FileNotFoundException, IOException { // Process the command-line options CommandOption.setSummary (Csv2Classify.class, "A tool for classifying a stream of unlabeled instances"); CommandOption.process (Csv2Classify.class, args); // Print some helpful messages for error cases if (args.length == 0) { CommandOption.getList(Csv2Classify.class).printUsage(false); System.exit (-1); } if (inputFile == null) { throw new IllegalArgumentException ("You must include `--input FILE ...' in order to specify a"+ "file containing the instances, one per line."); } // Read classifier from file Classifier classifier = null; try { ObjectInputStream ois = new ObjectInputStream (new BufferedInputStream(new FileInputStream (classifierFile.value))); classifier = (Classifier) ois.readObject(); ois.close(); } catch (Exception e) { throw new IllegalArgumentException("Problem loading classifier from file " + classifierFile.value + ": " + e.getMessage()); } // Read instances from the file Reader fileReader; if (inputFile.value.toString().equals ("-")) { fileReader = new InputStreamReader (System.in); } else { fileReader = new InputStreamReader(new FileInputStream(inputFile.value), encoding.value); } Iterator csvIterator = new CsvIterator (fileReader, Pattern.compile(lineRegex.value), dataOption.value, 0, nameOption.value); Iterator iterator = classifier.getInstancePipe().newIteratorFrom(csvIterator); // Write classifications to the output file PrintStream out = null; if (outputFile.value.toString().equals ("-")) { out = System.out; } else { out = new PrintStream(outputFile.value, encoding.value); } // [email protected] // Stop growth on the alphabets. If this is not done and new // features are added, the feature and classifier parameter // indices will not match. classifier.getInstancePipe().getDataAlphabet().stopGrowth(); classifier.getInstancePipe().getTargetAlphabet().stopGrowth(); while (iterator.hasNext()) { Instance instance = iterator.next(); Labeling labeling = classifier.classify(instance).getLabeling(); StringBuilder output = new StringBuilder(); output.append(instance.getName()); for (int location = 0; location < labeling.numLocations(); location++) { output.append("\t" + labeling.labelAtLocation(location)); output.append("\t" + labeling.valueAtLocation(location)); } out.println(output); } if (! outputFile.value.toString().equals ("-")) { out.close(); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy