All Downloads are FREE. Search and download functionalities are using the official Maven repository.

cc.mallet.extract.PerDocumentF1Evaluator Maven / Gradle / Ivy

Go to download

MALLET is a Java-based package for statistical natural language processing, document classification, clustering, topic modeling, information extraction, and other machine learning applications to text.

The newest version!
/* Copyright (C) 2003 Univ. of Massachusetts Amherst, Computer Science Dept.
   This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
   http://www.cs.umass.edu/~mccallum/mallet
   This software is provided under the terms of the Common Public License,
   version 1.0, as published by http://www.opensource.org.  For further
   information, see the file `LICENSE' included with this distribution. */
package cc.mallet.extract;


import java.io.PrintStream;
import java.io.OutputStream;
import java.io.PrintWriter;
import java.io.OutputStreamWriter;
import java.text.DecimalFormat;
import java.util.Iterator;

import cc.mallet.types.Label;
import cc.mallet.types.LabelAlphabet;
import cc.mallet.types.MatrixOps;

/**
 * Created: Oct 8, 2004
 *
 * @author  1)
          System.err.println ("Warning: Field "+predField+" has more than one extracted value. Picking arbitrarily...");
        if (trueField != null && trueField.isValue (predField.value (0), comparator)) {
          numCorr [idx]++;
        } else {
          // We have an error, report if necessary
          if (errorOutputStream != null) {
            //xxx TODO: Display name of supporting document
            errorOutputStream.println ("Error in extraction! Document "+extraction.getDocumentExtraction (docnum).getName ());
            errorOutputStream.println ("Predicted "+predField);
            errorOutputStream.println ("True "+trueField);
            errorOutputStream.println ();
          }
        }
      }

      // Calc true
      it = target.fieldsIterator ();
      while (it.hasNext ()) {
        Field trueField = (Field) it.next ();
        Label name = trueField.getName ();
        numTrue [name.getIndex ()]++;
      }
    }

    DecimalFormat f = new DecimalFormat ("0.####");

    double totalF1 = 0;
    int totalFields = 0;
    out.println (description+" per-document F1");
    out.println ("Name\tP\tR\tF1");
    for (int i = 0; i < numLabels; i++) {
      double P = (numPred[i] == 0) ? 0 : ((double)numCorr[i]) / numPred [i];
      double R = (numTrue[i] == 0) ? 1 : ((double)numCorr[i]) / numTrue [i];
      double F1 = (P + R == 0) ? 0 : (2 * P * R) / (P + R);
      if ((numPred[i] > 0) || (numTrue[i] > 0)) {
        totalF1 += F1;
        totalFields++;
      }
      Label name = dict.lookupLabel (i);
      out.println (name+"\t"+f.format(P)+"\t"+f.format(R)+"\t"+f.format(F1));
    }

    int totalCorr = MatrixOps.sum (numCorr);
    int totalPred = MatrixOps.sum (numPred);
    int totalTrue = MatrixOps.sum (numTrue);

    double P = ((double)totalCorr) / totalPred;
    double R = ((double)totalCorr) / totalTrue;
    double F1 = (2 * P * R) / (P + R);
    out.println ("OVERALL (micro-averaged) P="+f.format(P)+" R="+f.format(R)+" F1="+f.format(F1));
    out.println ("OVERALL (macro-averaged) F1="+f.format(totalF1/totalFields));
    out.println ();
  }

}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy