
cc.mallet.grmm.inference.gbp.FullMessageStrategy Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of jcore-mallet-2.0.9 Show documentation
Show all versions of jcore-mallet-2.0.9 Show documentation
MALLET is a Java-based package for statistical natural language processing, document classification, clustering, topic modeling, information extraction, and other machine learning applications to text.
The newest version!
/* Copyright (C) 2003 Univ. of Massachusetts Amherst, Computer Science Dept.
This file is part of "MALLET" (MAchine Learning for LanguagE Toolkit).
http://www.cs.umass.edu/~mccallum/mallet
This software is provided under the terms of the Common Public License,
version 1.0, as published by http://www.opensource.org. For further
information, see the file `LICENSE' included with this distribution. */
package cc.mallet.grmm.inference.gbp;
import java.util.Iterator;
import cc.mallet.grmm.types.*;
/**
* A first implementation of MessageStrategy that assumes that a BP region graph
* is being used.
*
* Created: May 29, 2005
*
* @author "+to+" after msgProduct: "+product);
for (Iterator it = edge.factorsToSend.iterator (); it.hasNext ();) {
Factor ptl = (Factor) it.next ();
product.multiplyBy (ptl);
}
TableFactor result = (TableFactor) product.marginalize (to.vars);
result.normalize ();
if (debug) {
System.err.println ("Final message "+edge+":"+result);
}
newMessages.setMessage (from, to, result);
}
/*
static void multiplyEdgeFactors (RegionEdge edge, DiscretePotential product)
{
for (Iterator it = edge.factorsToSend.iterator (); it.hasNext ();) {
DiscretePotential ptl = (DiscretePotential) it.next ();
if (debug)
System.err.println ("Message "+edge+" multiplying by: "+ptl);
product.multiplyBy (ptl);
}
}
*/
// debugging function
private boolean willBeNaN (Factor product, Factor otherMsg)
{
Factor p2 = product.duplicate ();
p2.divideBy (otherMsg);
return p2.isNaN ();
}
// debugging function
private boolean willBeNaN2 (Factor product, Factor otherMsg)
{
Factor p2 = product.duplicate ();
p2.multiplyBy (otherMsg);
return p2.isNaN ();
}
public MessageArray averageMessages (RegionGraph rg, MessageArray a1, MessageArray a2, double inertiaWeight)
{
MessageArray arr = new MessageArray (rg);
for (Iterator it = rg.edgeIterator (); it.hasNext ();) {
RegionEdge edge = (RegionEdge) it.next ();
DiscreteFactor msg1 = a1.getMessage (edge.from, edge.to);
DiscreteFactor msg2 = a2.getMessage (edge.from, edge.to);
if (msg1 != null) {
TableFactor averaged = (TableFactor) Factors.average (msg1, msg2, inertiaWeight);
arr.setMessage (edge.from, edge.to, averaged);
}
}
return arr;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy