All Downloads are FREE. Search and download functionalities are using the official Maven repository.

de.learnlib.oracle.equivalence.RandomWpMethodEQOracle Maven / Gradle / Ivy

There is a newer version: 0.17.0
Show newest version
/* Copyright (C) 2013-2020 TU Dortmund
 * This file is part of LearnLib, http://www.learnlib.de/.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package de.learnlib.oracle.equivalence;

import java.util.ArrayList;
import java.util.Collection;
import java.util.List;
import java.util.Random;
import java.util.stream.Stream;

import de.learnlib.api.oracle.EquivalenceOracle.DFAEquivalenceOracle;
import de.learnlib.api.oracle.EquivalenceOracle.MealyEquivalenceOracle;
import de.learnlib.api.oracle.MembershipOracle;
import de.learnlib.api.oracle.MembershipOracle.DFAMembershipOracle;
import de.learnlib.api.oracle.MembershipOracle.MealyMembershipOracle;
import de.learnlib.buildtool.refinement.annotation.GenerateRefinement;
import de.learnlib.buildtool.refinement.annotation.Generic;
import de.learnlib.buildtool.refinement.annotation.Interface;
import de.learnlib.buildtool.refinement.annotation.Map;
import net.automatalib.automata.UniversalDeterministicAutomaton;
import net.automatalib.automata.concepts.Output;
import net.automatalib.automata.fsa.DFA;
import net.automatalib.automata.transducers.MealyMachine;
import net.automatalib.commons.util.mappings.MutableMapping;
import net.automatalib.util.automata.Automata;
import net.automatalib.util.automata.cover.Covers;
import net.automatalib.words.Word;
import net.automatalib.words.WordBuilder;

/**
 * Implements an equivalence test by applying the Wp-method test on the given hypothesis automaton, as described in
 * "Test Selection Based on Finite State Models" by S. Fujiwara et al. Instead of enumerating the test suite in order,
 * this is a sampling implementation:
 * 
    *
  • 1. sample uniformly from the states for a prefix
  • *
  • 2. sample geometrically a random word
  • *
  • 3. sample a word from the set of suffixes / state identifiers
  • *
* There are two parameters:minimalSize determines the minimal size of the random word, this is useful when one first * performs a W(p)-method with some depth and continue with this randomized tester from that depth onward. The second * parameter rndLength determines the expected length of the random word. (The expected length in effect is minimalSize * + rndLength.) In the unbounded case it will not terminate for a correct hypothesis. * * @param * automaton type * @param * input symbol type * @param * output domain type * * @author Joshua Moerman */ @GenerateRefinement(name = "DFARandomWpMethodEQOracle", generics = "I", parentGenerics = {@Generic(clazz = DFA.class, generics = {"?", "I"}), @Generic("I"), @Generic(clazz = Boolean.class)}, parameterMapping = @Map(from = MembershipOracle.class, to = DFAMembershipOracle.class, withGenerics = "I"), interfaces = @Interface(clazz = DFAEquivalenceOracle.class, generics = "I")) @GenerateRefinement(name = "MealyRandomWpMethodEQOracle", generics = {"I", "O"}, parentGenerics = {@Generic(clazz = MealyMachine.class, generics = {"?", "I", "?", "O"}), @Generic("I"), @Generic(clazz = Word.class, generics = "O")}, parameterMapping = @Map(from = MembershipOracle.class, to = MealyMembershipOracle.class, withGenerics = {"I", "O"}), interfaces = @Interface(clazz = MealyEquivalenceOracle.class, generics = {"I", "O"})) public class RandomWpMethodEQOracle & Output, I, D> extends AbstractTestWordEQOracle { private final int minimalSize; private final int rndLength; private final int bound; private final Random rand; /** * Constructor for an unbounded testing oracle. * * @param sulOracle * oracle which answers tests. * @param minimalSize * minimal size of the random word * @param rndLength * expected length (in addition to minimalSize) of random word */ public RandomWpMethodEQOracle(MembershipOracle sulOracle, int minimalSize, int rndLength) { this(sulOracle, minimalSize, rndLength, 0); } /** * Constructor for a bounded testing oracle. * * @param sulOracle * oracle which answers tests. * @param minimalSize * minimal size of the random word * @param rndLength * expected length (in addition to minimalSize) of random word * @param bound * specifies the bound (set to 0 for unbounded). */ public RandomWpMethodEQOracle(MembershipOracle sulOracle, int minimalSize, int rndLength, int bound) { this(sulOracle, minimalSize, rndLength, bound, 1); } /** * Constructor for a bounded testing oracle with specific batch size. * * @param sulOracle * oracle which answers tests. * @param minimalSize * minimal size of the random word * @param rndLength * expected length (in addition to minimalSize) of random word * @param bound * specifies the bound (set to 0 for unbounded). * @param batchSize * size of the batches sent to the membership oracle */ public RandomWpMethodEQOracle(MembershipOracle sulOracle, int minimalSize, int rndLength, int bound, int batchSize) { this(sulOracle, minimalSize, rndLength, bound, new Random(), batchSize); } /** * Constructor for a bounded testing oracle with specific batch size. * * @param sulOracle * oracle which answers tests. * @param minimalSize * minimal size of the random word * @param rndLength * expected length (in addition to minimalSize) of random word * @param bound * specifies the bound (set to 0 for unbounded). * @param random * custom Random generator. * @param batchSize * size of the batches sent to the membership oracle */ public RandomWpMethodEQOracle(MembershipOracle sulOracle, int minimalSize, int rndLength, int bound, Random random, int batchSize) { super(sulOracle, batchSize); this.minimalSize = minimalSize; this.rndLength = rndLength; this.bound = bound; this.rand = random; } @Override protected Stream> generateTestWords(A hypothesis, Collection inputs) { UniversalDeterministicAutomaton aut = hypothesis; return doGenerateTestWords(aut, inputs); } private Stream> doGenerateTestWords(UniversalDeterministicAutomaton hypothesis, Collection inputs) { // Note that we want to use ArrayLists because we want constant time random access // We will sample from this for a prefix List> stateCover = new ArrayList<>(hypothesis.size()); Covers.stateCover(hypothesis, inputs, stateCover); // Then repeatedly from this for a random word List arrayAlphabet = new ArrayList<>(inputs); // Finally we test the state with a suffix, sometimes a global one, sometimes local List> globalSuffixes = new ArrayList<>(); Automata.characterizingSet(hypothesis, inputs, globalSuffixes); MutableMapping>> localSuffixSets = hypothesis.createStaticStateMapping(); for (S state : hypothesis.getStates()) { List> suffixSet = new ArrayList<>(); Automata.stateCharacterizingSet(hypothesis, inputs, state, suffixSet); localSuffixSets.put(state, suffixSet); } final Stream> result = Stream.generate(() -> generateSingleTestWord(hypothesis, stateCover, arrayAlphabet, globalSuffixes, localSuffixSets)); return bound > 0 ? result.limit(bound) : result; } private Word generateSingleTestWord(UniversalDeterministicAutomaton hypothesis, List> stateCover, List arrayAlphabet, List> globalSuffixes, MutableMapping>> localSuffixSets) { WordBuilder wb = new WordBuilder<>(minimalSize + rndLength + 1); // pick a random state wb.append(stateCover.get(rand.nextInt(stateCover.size()))); // construct random middle part (of some expected length) int size = minimalSize; while ((size > 0) || (rand.nextDouble() > 1 / (rndLength + 1.0))) { wb.append(arrayAlphabet.get(rand.nextInt(arrayAlphabet.size()))); if (size > 0) { size--; } } // pick a random suffix for this state // 50% chance for state testing, 50% chance for transition testing if (rand.nextBoolean()) { // global if (!globalSuffixes.isEmpty()) { wb.append(globalSuffixes.get(rand.nextInt(globalSuffixes.size()))); } } else { // local S state2 = hypothesis.getState(wb); List> localSuffixes = localSuffixSets.get(state2); if (!localSuffixes.isEmpty()) { wb.append(localSuffixes.get(rand.nextInt(localSuffixes.size()))); } } return wb.toWord(); } }