de.learnlib.examples.example1.Example Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learnlib-examples Show documentation
Show all versions of learnlib-examples Show documentation
A collection of examples of how to use LearnLib
/* Copyright (C) 2013 TU Dortmund
* This file is part of LearnLib, http://www.learnlib.de/.
*
* LearnLib is free software; you can redistribute it and/or
* modify it under the terms of the GNU Lesser General Public
* License version 3.0 as published by the Free Software Foundation.
*
* LearnLib is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* Lesser General Public License for more details.
*
* You should have received a copy of the GNU Lesser General Public
* License along with LearnLib; if not, see
* .
*/
package de.learnlib.examples.example1;
import java.io.IOException;
import java.io.Writer;
import de.learnlib.algorithms.features.observationtable.OTUtils;
import de.learnlib.algorithms.features.observationtable.writer.ObservationTableASCIIWriter;
import de.learnlib.algorithms.lstargeneric.dfa.ExtensibleLStarDFA;
import de.learnlib.algorithms.lstargeneric.dfa.ExtensibleLStarDFABuilder;
import de.learnlib.api.MembershipOracle.DFAMembershipOracle;
import de.learnlib.eqtests.basic.WMethodEQOracle.DFAWMethodEQOracle;
import de.learnlib.experiments.Experiment.DFAExperiment;
import de.learnlib.oracles.CounterOracle.DFACounterOracle;
import de.learnlib.oracles.SimulatorOracle.DFASimulatorOracle;
import de.learnlib.statistics.SimpleProfiler;
import net.automatalib.automata.fsa.DFA;
import net.automatalib.automata.fsa.impl.compact.CompactDFA;
import net.automatalib.commons.dotutil.DOT;
import net.automatalib.util.graphs.dot.GraphDOT;
import net.automatalib.words.Alphabet;
import net.automatalib.words.impl.Alphabets;
/**
* This example shows the usage of a learning algorithm and an equivalence test
* as part of an experiment in order to learn a simulated SUL (system under
* learning).
*
* @author falkhowar
*/
public class Example {
/**
* creates example from Angluin's seminal paper.
*
* @return example dfa
*/
private static CompactDFA constructSUL() {
// input alphabet contains characters 'a'..'b'
Alphabet sigma = Alphabets.characters('a', 'b');
// create states
CompactDFA dfa = new CompactDFA<>(sigma);
int q0 = dfa.addInitialState(true);
int q1 = dfa.addState(false);
int q2 = dfa.addState(false);
int q3 = dfa.addState(false);
// create transitions
dfa.addTransition(q0, 'a', q1);
dfa.addTransition(q0, 'b', q2);
dfa.addTransition(q1, 'a', q0);
dfa.addTransition(q1, 'b', q3);
dfa.addTransition(q2, 'a', q3);
dfa.addTransition(q2, 'b', q0);
dfa.addTransition(q3, 'a', q2);
dfa.addTransition(q3, 'b', q1);
return dfa;
}
public static void main(String[] args) throws IOException {
// load DFA and alphabet
CompactDFA target = constructSUL();
Alphabet inputs = target.getInputAlphabet();
// construct a simulator membership query oracle
// input - Character (determined by example)
DFAMembershipOracle sul = new DFASimulatorOracle<>(target);
// oracle for counting queries wraps SUL
DFACounterOracle mqOracle =
new DFACounterOracle<>(sul, "membership queries");
// construct L* instance
ExtensibleLStarDFA lstar = new ExtensibleLStarDFABuilder()
.withAlphabet(inputs) // input alphabet
.withOracle(mqOracle) // membership oracle
.create();
// construct a W-method conformance test
// exploring the system up to depth 4 from
// every state of a hypothesis
DFAWMethodEQOracle wMethod =
new DFAWMethodEQOracle<>(4, mqOracle);
// construct a learning experiment from
// the learning algorithm and the conformance test.
// The experiment will execute the main loop of
// active learning
DFAExperiment experiment =
new DFAExperiment<>(lstar, wMethod, inputs);
// turn on time profiling
experiment.setProfile(true);
// enable logging of models
experiment.setLogModels(true);
// run experiment
experiment.run();
// get learned model
DFA, Character> result = experiment.getFinalHypothesis();
// report results
System.out.println("-------------------------------------------------------");
// profiling
System.out.println(SimpleProfiler.getResults());
// learning statistics
System.out.println(experiment.getRounds().getSummary());
System.out.println(mqOracle.getStatisticalData().getSummary());
// model statistics
System.out.println("States: " + result.size());
System.out.println("Sigma: " + inputs.size());
// show model
System.out.println();
System.out.println("Model: ");
GraphDOT.write(result, inputs, System.out); // may throw IOException!
Writer w = DOT.createDotWriter(true);
GraphDOT.write(result, inputs, w);
w.close();
System.out.println("-------------------------------------------------------");
System.out.println("Final observation table:");
new ObservationTableASCIIWriter<>().write(lstar.getObservationTable(), System.out);
OTUtils.displayHTMLInBrowser(lstar.getObservationTable());
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy