
de.learnlib.algorithm.lstar.mealy.ClassicLStarMealy Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learnlib-lstar Show documentation
Show all versions of learnlib-lstar Show documentation
This artifact provides the implementation of the L* learning algorithm described in the paper "Learning Regular
Sets from Queries and Counterexamples" (https://doi.org/10.1016/0890-5401(87)90052-6) by Dana Angluin including
variations and optimizations thereof such as the versions based on "On the Learnability of Infinitary Regular
Sets" (https://dx.doi.org/10.1006/inco.1995.1070) by Oded Maler and Amir Pnueli or "Inference of finite automata
using homing sequences" (http://dx.doi.org/10.1006/inco.1993.1021) by Ronald L. Rivest and Robert E. Schapire.
The newest version!
/* Copyright (C) 2013-2023 TU Dortmund
* This file is part of LearnLib, http://www.learnlib.de/.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package de.learnlib.algorithm.lstar.mealy;
import java.util.Collections;
import java.util.List;
import com.github.misberner.buildergen.annotations.GenerateBuilder;
import de.learnlib.algorithm.lstar.AbstractExtensibleAutomatonLStar;
import de.learnlib.algorithm.lstar.ce.ObservationTableCEXHandler;
import de.learnlib.algorithm.lstar.ce.ObservationTableCEXHandlers;
import de.learnlib.algorithm.lstar.closing.ClosingStrategies;
import de.learnlib.algorithm.lstar.closing.ClosingStrategy;
import de.learnlib.datastructure.observationtable.ObservationTable;
import de.learnlib.datastructure.observationtable.Row;
import de.learnlib.oracle.MembershipOracle;
import net.automatalib.alphabet.Alphabet;
import net.automatalib.automaton.CompactTransition;
import net.automatalib.automaton.concept.SuffixOutput;
import net.automatalib.automaton.transducer.CompactMealy;
import net.automatalib.automaton.transducer.MealyMachine;
import net.automatalib.word.Word;
/**
* An implementation of the L*Mealy algorithm for inferring Mealy machines, as described by Oliver Niese in his Ph.D.
* thesis.
*
* @param
* input symbol class
* @param
* output symbol class
*/
public class ClassicLStarMealy
extends AbstractExtensibleAutomatonLStar, I, O, Integer, CompactTransition, Void, O, CompactMealy> {
private final O emptyOutput;
/**
* Constructor.
*
* @param alphabet
* the learning alphabet
* @param oracle
* the (Mealy) oracle
*/
public ClassicLStarMealy(Alphabet alphabet, MembershipOracle oracle) {
this(alphabet, oracle, ObservationTableCEXHandlers.CLASSIC_LSTAR, ClosingStrategies.CLOSE_FIRST);
}
/**
* Constructor.
*
* @param alphabet
* the learning alphabet
* @param oracle
* the (Mealy) oracle
* @param cexHandler
* the counterexample handler
* @param closingStrategy
* the closing strategy
*/
public ClassicLStarMealy(Alphabet alphabet,
MembershipOracle oracle,
ObservationTableCEXHandler super I, ? super O> cexHandler,
ClosingStrategy super I, ? super O> closingStrategy) {
this(alphabet,
oracle,
Collections.singletonList(Word.epsilon()),
Collections.emptyList(),
cexHandler,
closingStrategy);
}
@GenerateBuilder(defaults = AbstractExtensibleAutomatonLStar.BuilderDefaults.class)
public ClassicLStarMealy(Alphabet alphabet,
MembershipOracle oracle,
List> initialPrefixes,
List> initialSuffixes,
ObservationTableCEXHandler super I, ? super O> cexHandler,
ClosingStrategy super I, ? super O> closingStrategy) {
super(alphabet,
oracle,
new CompactMealy<>(alphabet),
initialPrefixes,
LStarMealyUtil.ensureSuffixCompliancy(initialSuffixes, alphabet, true),
cexHandler,
closingStrategy);
this.emptyOutput = oracle.answerQuery(Word.epsilon());
}
@Override
public MealyMachine, I, ?, O> getHypothesisModel() {
return internalHyp;
}
@Override
protected Void stateProperty(ObservationTable table, Row stateRow) {
return null;
}
@Override
protected O transitionProperty(ObservationTable table, Row stateRow, int inputIdx) {
return table.cellContents(stateRow, inputIdx);
}
@Override
public void addAlphabetSymbol(I symbol) {
/*
* This implementation extracts the transition outputs from the observation table. Therefore, it assumes that
* the i-th input symbol is the i-th suffix of the observation table. When adding new input symbols (and
* therefore new suffixes) this mapping may be broken because of other suffixes that have been added in previous
* refinement steps.
*
* Until this mapping is fixed, the code cannot reliably add new input symbols. Instead of running into issues
* way into the learning process, fail-fast here.
*/
throw new UnsupportedOperationException(
"This implementation does not correct support adding new alphabet symbols. " +
"Use the ExtensibleLStarMealy implementation with the classic counterexample handler instead.");
}
@Override
protected SuffixOutput hypothesisOutput() {
return (prefix, suffix) -> {
final Word wordOut = internalHyp.computeSuffixOutput(prefix, suffix);
return wordOut.isEmpty() ? emptyOutput : wordOut.lastSymbol();
};
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy