
de.learnlib.algorithm.lstar.moore.ExtensibleLStarMoore Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of learnlib-lstar Show documentation
Show all versions of learnlib-lstar Show documentation
This artifact provides the implementation of the L* learning algorithm described in the paper "Learning Regular
Sets from Queries and Counterexamples" (https://doi.org/10.1016/0890-5401(87)90052-6) by Dana Angluin including
variations and optimizations thereof such as the versions based on "On the Learnability of Infinitary Regular
Sets" (https://dx.doi.org/10.1006/inco.1995.1070) by Oded Maler and Amir Pnueli or "Inference of finite automata
using homing sequences" (http://dx.doi.org/10.1006/inco.1993.1021) by Ronald L. Rivest and Robert E. Schapire.
The newest version!
/* Copyright (C) 2013-2023 TU Dortmund
* This file is part of LearnLib, http://www.learnlib.de/.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package de.learnlib.algorithm.lstar.moore;
import java.util.Collections;
import java.util.List;
import com.github.misberner.buildergen.annotations.GenerateBuilder;
import de.learnlib.algorithm.lstar.AbstractExtensibleAutomatonLStar;
import de.learnlib.algorithm.lstar.ce.ObservationTableCEXHandler;
import de.learnlib.algorithm.lstar.closing.ClosingStrategy;
import de.learnlib.datastructure.observationtable.OTLearner.OTLearnerMoore;
import de.learnlib.datastructure.observationtable.ObservationTable;
import de.learnlib.datastructure.observationtable.Row;
import de.learnlib.oracle.MembershipOracle;
import net.automatalib.alphabet.Alphabet;
import net.automatalib.automaton.concept.SuffixOutput;
import net.automatalib.automaton.transducer.CompactMoore;
import net.automatalib.automaton.transducer.MooreMachine;
import net.automatalib.word.Word;
/**
* A {@link MooreMachine}-based specialization of the extensible L* learner.
*
* @param
* input symbol type
* @param
* output symbol type
*/
public class ExtensibleLStarMoore
extends AbstractExtensibleAutomatonLStar, I, Word, Integer, Integer, O, Void, CompactMoore>
implements OTLearnerMoore {
public ExtensibleLStarMoore(Alphabet alphabet,
MembershipOracle> oracle,
List> initialSuffixes,
ObservationTableCEXHandler super I, ? super Word> cexHandler,
ClosingStrategy super I, ? super Word> closingStrategy) {
this(alphabet, oracle, Collections.singletonList(Word.epsilon()), initialSuffixes, cexHandler, closingStrategy);
}
@GenerateBuilder(defaults = AbstractExtensibleAutomatonLStar.BuilderDefaults.class)
public ExtensibleLStarMoore(Alphabet alphabet,
MembershipOracle> oracle,
List> initialPrefixes,
List> initialSuffixes,
ObservationTableCEXHandler super I, ? super Word> cexHandler,
ClosingStrategy super I, ? super Word> closingStrategy) {
super(alphabet,
oracle,
new CompactMoore<>(alphabet),
initialPrefixes,
LStarMooreUtil.ensureSuffixCompliancy(initialSuffixes),
cexHandler,
closingStrategy);
}
@Override
public MooreMachine, I, ?, O> getHypothesisModel() {
return internalHyp;
}
@Override
protected O stateProperty(ObservationTable> table, Row stateRow) {
Word word = table.cellContents(stateRow, 0);
return word.getSymbol(0);
}
@Override
protected Void transitionProperty(ObservationTable> table, Row stateRow, int inputIdx) {
return null;
}
@Override
protected SuffixOutput> hypothesisOutput() {
return internalHyp;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy