All Downloads are FREE. Search and download functionalities are using the official Maven repository.

de.learnlib.algorithm.ttt.mealy.TTTDTNodeMealy Maven / Gradle / Ivy

Go to download

This artifact provides the implementation of the TTT algorithm as described in the paper "The TTT Algorithm: A Redundancy-Free Approach to Active Automata Learning" (https://doi.org/10.1007/978-3-319-11164-3_26) by Malte Isberner, Falk Howar, and Bernhard Steffen.

The newest version!
/* Copyright (C) 2013-2023 TU Dortmund
 * This file is part of LearnLib, http://www.learnlib.de/.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *     http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package de.learnlib.algorithm.ttt.mealy;

import java.util.HashMap;
import java.util.Map;

import de.learnlib.algorithm.ttt.base.AbstractBaseDTNode;
import de.learnlib.algorithm.ttt.base.TTTState;

/**
 * Generic n-ary discrimination tree node specialization.
 *
 * @param 
 *         input symbol type
 * @param 
 *         output symbol type
 */
public class TTTDTNodeMealy extends AbstractBaseDTNode {

    public TTTDTNodeMealy() {
        this(null, null);
    }

    public TTTDTNodeMealy(AbstractBaseDTNode parent, D parentEdgeLabel) {
        super(parent, parentEdgeLabel);
    }

    @Override
    protected Map> createChildMap() {
        return new HashMap<>();
    }

    @Override
    protected AbstractBaseDTNode createChild(D outcome, TTTState data) {
        return new TTTDTNodeMealy<>(this, outcome);
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy