All Downloads are FREE. Search and download functionalities are using the official Maven repository.

de.lmu.ifi.dbs.elki.index.lsh.hashfunctions.CosineLocalitySensitiveHashFunction Maven / Gradle / Ivy

/*
 * This file is part of ELKI:
 * Environment for Developing KDD-Applications Supported by Index-Structures
 *
 * Copyright (C) 2019
 * ELKI Development Team
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program. If not, see .
 */
package de.lmu.ifi.dbs.elki.index.lsh.hashfunctions;

import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.projection.random.RandomProjectionFamily;
import de.lmu.ifi.dbs.elki.data.projection.random.RandomProjectionFamily.Projection;
import de.lmu.ifi.dbs.elki.utilities.documentation.Reference;

/**
 * Random projection family to use with sparse vectors.
 * 

* Reference: *

* M. S. Charikar
* Similarity estimation techniques from rounding algorithms
* Proc. 34th ACM Symposium on Theory of Computing, STOC'02 * * @author Evgeniy Faerman * @since 0.7.0 */ @Reference(authors = "M. S. Charikar", // title = "Similarity estimation techniques from rounding algorithms", // booktitle = "Proc. 34th ACM Symposium on Theory of Computing, STOC'02", // url = "https://doi.org/10.1145/509907.509965", // bibkey = "DBLP:conf/stoc/Charikar02") public class CosineLocalitySensitiveHashFunction implements LocalitySensitiveHashFunction { /** * Projection function. */ private RandomProjectionFamily.Projection projection; /** * Constructor. * * @param projection Projection */ public CosineLocalitySensitiveHashFunction(Projection projection) { this.projection = projection; } @Override public int hashObject(NumberVector obj) { double[] buf = projection.project(obj); int hashValue = 0; for(int i = 0, j = 1; i < buf.length; i++, j <<= 1) { if(buf[i] > 0) { hashValue = hashValue | j; } } return hashValue; } @Override public int hashObject(NumberVector obj, double[] buf) { projection.project(obj, buf); int hashValue = 0; for(int i = 0, j = 1; i < buf.length; i++, j <<= 1) { if(buf[i] > 0) { hashValue = hashValue | j; } } return hashValue; } @Override public int getNumberOfProjections() { return projection.getOutputDimensionality(); } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy