
tutorial.distancefunction.MultiLPNorm Maven / Gradle / Ivy
/*
* This file is part of ELKI:
* Environment for Developing KDD-Applications Supported by Index-Structures
*
* Copyright (C) 2019
* ELKI Development Team
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see .
*/
package tutorial.distancefunction;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.type.SimpleTypeInformation;
import de.lmu.ifi.dbs.elki.data.type.VectorFieldTypeInformation;
import de.lmu.ifi.dbs.elki.distance.distancefunction.AbstractNumberVectorDistanceFunction;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.DoubleListParameter;
/**
* Tutorial example Minowski-distance variation with different exponents for
* different dimensions for ELKI.
*
* See
* Distance
* function tutorial
*
* @author Erich Schubert
* @since 0.5.0
*/
public class MultiLPNorm extends AbstractNumberVectorDistanceFunction {
/**
* The exponents
*/
double[] ps;
/**
* Normalization factor (count(ps)/sum(ps))
*/
double pinv;
/**
* Constructor.
*
* @param ps
* The exponents
*/
public MultiLPNorm(double[] ps) {
super();
double sum = 0.0;
for(int dim = 0; dim < ps.length; dim++) {
assert (ps[dim] >= 0) : "Negative exponents are not allowed.";
sum += ps[dim];
}
assert (sum > 0) : "At least one exponent should be different from 0!";
this.ps = ps;
this.pinv = ps.length / sum;
}
@Override
public double distance(NumberVector o1, NumberVector o2) {
assert o1.getDimensionality() == ps.length : "Inappropriate dimensionality!";
assert o2.getDimensionality() == ps.length : "Inappropriate dimensionality!";
double sum = 0.0;
for(int dim = 0; dim < ps.length; dim++) {
if(ps[dim] > 0) {
final double delta = Math.abs(o1.doubleValue(dim) - o2.doubleValue(dim));
sum += Math.pow(delta, ps[dim]);
}
}
return Math.pow(sum, pinv);
}
@Override
public SimpleTypeInformation super NumberVector> getInputTypeRestriction() {
return VectorFieldTypeInformation.typeRequest(NumberVector.class, ps.length, ps.length);
}
/**
* Parameterization class example
*
* @author Erich Schubert
*/
public static class Parameterizer extends AbstractParameterizer {
/**
* Option ID for the exponents
*/
public static final OptionID EXPONENTS_ID = new OptionID("multinorm.ps", "The exponents to use for this distance function");
/**
* P exponents
*/
double[] ps;
@Override
protected void makeOptions(Parameterization config) {
super.makeOptions(config);
DoubleListParameter ps_param = new DoubleListParameter(EXPONENTS_ID);
if(config.grab(ps_param)) {
ps = ps_param.getValue().clone();
}
}
@Override
protected MultiLPNorm makeInstance() {
return new MultiLPNorm(ps);
}
}
}