All Downloads are FREE. Search and download functionalities are using the official Maven repository.

tutorial.distancefunction.MultiLPNorm Maven / Gradle / Ivy

/*
 * This file is part of ELKI:
 * Environment for Developing KDD-Applications Supported by Index-Structures
 *
 * Copyright (C) 2019
 * ELKI Development Team
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program. If not, see .
 */
package tutorial.distancefunction;

import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.type.SimpleTypeInformation;
import de.lmu.ifi.dbs.elki.data.type.VectorFieldTypeInformation;
import de.lmu.ifi.dbs.elki.distance.distancefunction.AbstractNumberVectorDistanceFunction;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.OptionID;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.DoubleListParameter;

/**
 * Tutorial example Minowski-distance variation with different exponents for
 * different dimensions for ELKI.
 * 

* See * Distance * function tutorial * * @author Erich Schubert * @since 0.5.0 */ public class MultiLPNorm extends AbstractNumberVectorDistanceFunction { /** * The exponents */ double[] ps; /** * Normalization factor (count(ps)/sum(ps)) */ double pinv; /** * Constructor. * * @param ps * The exponents */ public MultiLPNorm(double[] ps) { super(); double sum = 0.0; for(int dim = 0; dim < ps.length; dim++) { assert (ps[dim] >= 0) : "Negative exponents are not allowed."; sum += ps[dim]; } assert (sum > 0) : "At least one exponent should be different from 0!"; this.ps = ps; this.pinv = ps.length / sum; } @Override public double distance(NumberVector o1, NumberVector o2) { assert o1.getDimensionality() == ps.length : "Inappropriate dimensionality!"; assert o2.getDimensionality() == ps.length : "Inappropriate dimensionality!"; double sum = 0.0; for(int dim = 0; dim < ps.length; dim++) { if(ps[dim] > 0) { final double delta = Math.abs(o1.doubleValue(dim) - o2.doubleValue(dim)); sum += Math.pow(delta, ps[dim]); } } return Math.pow(sum, pinv); } @Override public SimpleTypeInformation getInputTypeRestriction() { return VectorFieldTypeInformation.typeRequest(NumberVector.class, ps.length, ps.length); } /** * Parameterization class example * * @author Erich Schubert */ public static class Parameterizer extends AbstractParameterizer { /** * Option ID for the exponents */ public static final OptionID EXPONENTS_ID = new OptionID("multinorm.ps", "The exponents to use for this distance function"); /** * P exponents */ double[] ps; @Override protected void makeOptions(Parameterization config) { super.makeOptions(config); DoubleListParameter ps_param = new DoubleListParameter(EXPONENTS_ID); if(config.grab(ps_param)) { ps = ps_param.getValue().clone(); } } @Override protected MultiLPNorm makeInstance() { return new MultiLPNorm(ps); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy