
tutorial.javaapi.PassingDataToELKI Maven / Gradle / Ivy
/*
* This file is part of ELKI:
* Environment for Developing KDD-Applications Supported by Index-Structures
*
* Copyright (C) 2019
* ELKI Development Team
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see .
*/
package tutorial.javaapi;
import de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.KMeansLloyd;
import de.lmu.ifi.dbs.elki.algorithm.clustering.kmeans.initialization.RandomUniformGeneratedInitialMeans;
import de.lmu.ifi.dbs.elki.data.Cluster;
import de.lmu.ifi.dbs.elki.data.Clustering;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.model.KMeansModel;
import de.lmu.ifi.dbs.elki.data.type.TypeUtil;
import de.lmu.ifi.dbs.elki.database.Database;
import de.lmu.ifi.dbs.elki.database.StaticArrayDatabase;
import de.lmu.ifi.dbs.elki.database.ids.DBIDIter;
import de.lmu.ifi.dbs.elki.database.ids.DBIDRange;
import de.lmu.ifi.dbs.elki.database.relation.Relation;
import de.lmu.ifi.dbs.elki.datasource.ArrayAdapterDatabaseConnection;
import de.lmu.ifi.dbs.elki.datasource.DatabaseConnection;
import de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.SquaredEuclideanDistanceFunction;
import de.lmu.ifi.dbs.elki.logging.LoggingConfiguration;
import de.lmu.ifi.dbs.elki.utilities.random.RandomFactory;
/**
* Example program to generate a random data set, and run k-means on it.
*
* @author Erich Schubert
* @since 0.7.0
*/
public class PassingDataToELKI {
/**
* Main method
*
* @param args Command line parameters (not supported)
*/
public static void main(String[] args) {
// Set the logging level to statistics:
LoggingConfiguration.setStatistics();
// Generate a random data set.
// Note: ELKI has a nice data generator class, use that instead.
double[][] data = new double[1000][2];
for(int i = 0; i < data.length; i++) {
for(int j = 0; j < data[i].length; j++) {
data[i][j] = Math.random();
}
}
// Adapter to load data from an existing array.
DatabaseConnection dbc = new ArrayAdapterDatabaseConnection(data);
// Create a database (which may contain multiple relations!)
Database db = new StaticArrayDatabase(dbc, null);
// Load the data into the database (do NOT forget to initialize...)
db.initialize();
// Relation containing the number vectors:
Relation rel = db.getRelation(TypeUtil.NUMBER_VECTOR_FIELD);
// We know that the ids must be a continuous range:
DBIDRange ids = (DBIDRange) rel.getDBIDs();
// K-means should be used with squared Euclidean (least squares):
SquaredEuclideanDistanceFunction dist = SquaredEuclideanDistanceFunction.STATIC;
// Default initialization, using global random:
// To fix the random seed, use: new RandomFactory(seed);
RandomUniformGeneratedInitialMeans init = new RandomUniformGeneratedInitialMeans(RandomFactory.DEFAULT);
// Textbook k-means clustering:
KMeansLloyd km = new KMeansLloyd<>(dist, //
3 /* k - number of partitions */, //
0 /* maximum number of iterations: no limit */, init);
// K-means will automatically choose a numerical relation from the data set:
// But we could make it explicit (if there were more than one numeric
// relation!): km.run(db, rel);
Clustering c = km.run(db);
// Output all clusters:
int i = 0;
for(Cluster clu : c.getAllClusters()) {
// K-means will name all clusters "Cluster" in lack of noise support:
System.out.println("#" + i + ": " + clu.getNameAutomatic());
System.out.println("Size: " + clu.size());
System.out.println("Center: " + clu.getModel().getPrototype().toString());
// Iterate over objects:
System.out.print("Objects: ");
for(DBIDIter it = clu.getIDs().iter(); it.valid(); it.advance()) {
// To get the vector use:
// NumberVector v = rel.get(it);
// Offset within our DBID range: "line number"
final int offset = ids.getOffset(it);
System.out.print(" " + offset);
// Do NOT rely on using "internalGetIndex()" directly!
}
System.out.println();
++i;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy