de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.MaximumDistanceFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elki Show documentation
Show all versions of elki Show documentation
ELKI - Main Module – Open-Source Data-Mining Framework with Index Acceleration
package de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski;
/*
This file is part of ELKI:
Environment for Developing KDD-Applications Supported by Index-Structures
Copyright (C) 2015
Ludwig-Maximilians-Universität München
Lehr- und Forschungseinheit für Datenbanksysteme
ELKI Development Team
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see .
*/
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.spatial.SpatialComparable;
import de.lmu.ifi.dbs.elki.utilities.Alias;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;
/**
* Maximum distance for {@link NumberVector}s.
*
* @author Erich Schubert
* @since 0.3
*/
@Alias({ "maximum", "max", "chebyshev", "de.lmu.ifi.dbs.elki.distance.distancefunction.MaximumDistanceFunction" })
public class MaximumDistanceFunction extends LPNormDistanceFunction {
/**
* Static instance.
*/
public static final MaximumDistanceFunction STATIC = new MaximumDistanceFunction();
/**
* Constructor - use {@link #STATIC} instead.
*
* @deprecated Use static instance!
*/
@Deprecated
public MaximumDistanceFunction() {
super(Double.POSITIVE_INFINITY);
}
private final double preDistance(NumberVector v1, NumberVector v2, int start, int end, double agg) {
for(int d = start; d < end; d++) {
final double xd = v1.doubleValue(d), yd = v2.doubleValue(d);
final double delta = (xd >= yd) ? xd - yd : yd - xd;
if(delta > agg) {
agg = delta;
}
}
return agg;
}
private final double preDistanceVM(NumberVector v, SpatialComparable mbr, int start, int end, double agg) {
for(int d = start; d < end; d++) {
final double value = v.doubleValue(d), min = mbr.getMin(d);
double delta = min - value;
if(delta < 0.) {
delta = value - mbr.getMax(d);
}
if(delta > agg) {
agg = delta;
}
}
return agg;
}
private final double preDistanceMBR(SpatialComparable mbr1, SpatialComparable mbr2, int start, int end, double agg) {
for(int d = start; d < end; d++) {
double delta = mbr2.getMin(d) - mbr1.getMax(d);
if(delta < 0.) {
delta = mbr1.getMin(d) - mbr2.getMax(d);
}
if(delta > agg) {
agg = delta;
}
}
return agg;
}
private final double preNorm(NumberVector v, int start, int end, double agg) {
for(int d = start; d < end; d++) {
final double xd = v.doubleValue(d);
final double delta = (xd >= 0.) ? xd : -xd;
if(delta > agg) {
agg = delta;
}
}
return agg;
}
private final double preNormMBR(SpatialComparable mbr, int start, int end, double agg) {
for(int d = start; d < end; d++) {
double delta = mbr.getMin(d);
if(delta < 0.) {
delta = -mbr.getMax(d);
}
if(delta > agg) {
agg = delta;
}
}
return agg;
}
@Override
public double distance(NumberVector v1, NumberVector v2) {
final int dim1 = v1.getDimensionality(), dim2 = v2.getDimensionality();
final int mindim = (dim1 < dim2) ? dim1 : dim2;
double agg = preDistance(v1, v2, 0, mindim, 0.);
if(dim1 > mindim) {
agg = preNorm(v1, mindim, dim1, agg);
}
else if(dim2 > mindim) {
agg = preNorm(v2, mindim, dim2, agg);
}
return agg;
}
@Override
public double norm(NumberVector v) {
return preNorm(v, 0, v.getDimensionality(), 0.);
}
@Override
public double minDist(SpatialComparable mbr1, SpatialComparable mbr2) {
final int dim1 = mbr1.getDimensionality(), dim2 = mbr2.getDimensionality();
final int mindim = (dim1 < dim2) ? dim1 : dim2;
final NumberVector v1 = (mbr1 instanceof NumberVector) ? (NumberVector) mbr1 : null;
final NumberVector v2 = (mbr2 instanceof NumberVector) ? (NumberVector) mbr2 : null;
double agg = 0.;
if(v1 != null) {
if(v2 != null) {
agg = preDistance(v1, v2, 0, mindim, agg);
}
else {
agg = preDistanceVM(v1, mbr2, 0, mindim, agg);
}
}
else {
if(v2 != null) {
agg = preDistanceVM(v2, mbr1, 0, mindim, agg);
}
else {
agg = preDistanceMBR(mbr1, mbr2, 0, mindim, agg);
}
}
// first object has more dimensions.
if(dim1 > mindim) {
if(v1 != null) {
agg = preNorm(v1, mindim, dim1, agg);
}
else {
agg = preNormMBR(v1, mindim, dim1, agg);
}
}
// second object has more dimensions.
if(dim2 > mindim) {
if(v2 != null) {
agg = preNorm(v2, mindim, dim2, agg);
}
else {
agg = preNormMBR(mbr2, mindim, dim2, agg);
}
}
return agg;
}
@Override
public boolean isMetric() {
return true;
}
@Override
public String toString() {
return "MaximumDistance";
}
@Override
public boolean equals(Object obj) {
if(obj == null) {
return false;
}
if(obj == this) {
return true;
}
if(this.getClass().equals(obj.getClass())) {
return true;
}
return super.equals(obj);
}
/**
* Parameterization class.
*
* @author Erich Schubert
*
* @apiviz.exclude
*/
public static class Parameterizer extends AbstractParameterizer {
@Override
protected MaximumDistanceFunction makeInstance() {
return MaximumDistanceFunction.STATIC;
}
}
}