de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski.WeightedEuclideanDistanceFunction Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of elki Show documentation
Show all versions of elki Show documentation
ELKI - Main Module – Open-Source Data-Mining Framework with Index Acceleration
package de.lmu.ifi.dbs.elki.distance.distancefunction.minkowski;
/*
This file is part of ELKI:
Environment for Developing KDD-Applications Supported by Index-Structures
Copyright (C) 2015
Ludwig-Maximilians-Universität München
Lehr- und Forschungseinheit für Datenbanksysteme
ELKI Development Team
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see .
*/
import java.util.Arrays;
import de.lmu.ifi.dbs.elki.data.NumberVector;
import de.lmu.ifi.dbs.elki.data.spatial.SpatialComparable;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.AbstractParameterizer;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameterization.Parameterization;
import de.lmu.ifi.dbs.elki.utilities.optionhandling.parameters.DoubleListParameter;
/**
* Weighted Euclidean distance for {@link NumberVector}s.
*
* @author Erich Schubert
* @since 0.4.0
*/
public class WeightedEuclideanDistanceFunction extends WeightedLPNormDistanceFunction {
/**
* Constructor.
*
* @param weights
*/
public WeightedEuclideanDistanceFunction(double[] weights) {
super(2.0, weights);
}
private final double preDistance(NumberVector v1, NumberVector v2, final int start, final int end, double agg) {
for(int d = start; d < end; d++) {
final double xd = v1.doubleValue(d), yd = v2.doubleValue(d);
final double delta = xd - yd;
agg += delta * delta * weights[d];
}
return agg;
}
private final double preDistanceVM(NumberVector v, SpatialComparable mbr, final int start, final int end, double agg) {
for(int d = start; d < end; d++) {
final double value = v.doubleValue(d), min = mbr.getMin(d);
double delta = min - value;
if(delta < 0.) {
delta = value - mbr.getMax(d);
}
if(delta > 0.) {
agg += delta * delta * weights[d];
}
}
return agg;
}
private final double preDistanceMBR(SpatialComparable mbr1, SpatialComparable mbr2, final int start, final int end, double agg) {
for(int d = start; d < end; d++) {
double delta = mbr2.getMin(d) - mbr1.getMax(d);
if(delta < 0.) {
delta = mbr1.getMin(d) - mbr2.getMax(d);
}
if(delta > 0.) {
agg += delta * delta * weights[d];
}
}
return agg;
}
private final double preNorm(NumberVector v, final int start, final int end, double agg) {
for(int d = start; d < end; d++) {
final double xd = v.doubleValue(d);
agg += xd * xd * weights[d];
}
return agg;
}
private final double preNormMBR(SpatialComparable mbr, final int start, final int end, double agg) {
for(int d = start; d < end; d++) {
double delta = mbr.getMin(d);
if(delta < 0.) {
delta = -mbr.getMax(d);
}
if(delta > 0.) {
agg += delta * delta * weights[d];
}
}
return agg;
}
@Override
public double distance(NumberVector v1, NumberVector v2) {
final int dim1 = v1.getDimensionality(), dim2 = v2.getDimensionality();
final int mindim = (dim1 < dim2) ? dim1 : dim2;
double agg = preDistance(v1, v2, 0, mindim, 0.);
if(dim1 > mindim) {
agg = preNorm(v1, mindim, dim1, agg);
}
else if(dim2 > mindim) {
agg = preNorm(v2, mindim, dim2, agg);
}
return Math.sqrt(agg);
}
@Override
public double norm(NumberVector v) {
return Math.sqrt(preNorm(v, 0, v.getDimensionality(), 0.));
}
@Override
public double minDist(SpatialComparable mbr1, SpatialComparable mbr2) {
final int dim1 = mbr1.getDimensionality(), dim2 = mbr2.getDimensionality();
final int mindim = (dim1 < dim2) ? dim1 : dim2;
final NumberVector v1 = (mbr1 instanceof NumberVector) ? (NumberVector) mbr1 : null;
final NumberVector v2 = (mbr2 instanceof NumberVector) ? (NumberVector) mbr2 : null;
double agg = 0.;
if(v1 != null) {
if(v2 != null) {
agg = preDistance(v1, v2, 0, mindim, agg);
}
else {
agg = preDistanceVM(v1, mbr2, 0, mindim, agg);
}
}
else {
if(v2 != null) {
agg = preDistanceVM(v2, mbr1, 0, mindim, agg);
}
else {
agg = preDistanceMBR(mbr1, mbr2, 0, mindim, agg);
}
}
// first object has more dimensions.
if(dim1 > mindim) {
if(v1 != null) {
agg = preNorm(v1, mindim, dim1, agg);
}
else {
agg = preNormMBR(v1, mindim, dim1, agg);
}
}
// second object has more dimensions.
if(dim2 > mindim) {
if(v2 != null) {
agg = preNorm(v2, mindim, dim2, agg);
}
else {
agg = preNormMBR(mbr2, mindim, dim2, agg);
}
}
return Math.sqrt(agg);
}
@Override
public boolean equals(Object obj) {
if(this == obj) {
return true;
}
if(obj == null) {
return false;
}
if(!(obj instanceof WeightedEuclideanDistanceFunction)) {
if(obj.getClass().equals(WeightedLPNormDistanceFunction.class)) {
return super.equals(obj);
}
if(obj.getClass().equals(EuclideanDistanceFunction.class)) {
for(double d : weights) {
if(d != 1.0) {
return false;
}
}
return true;
}
return false;
}
WeightedEuclideanDistanceFunction other = (WeightedEuclideanDistanceFunction) obj;
return Arrays.equals(this.weights, other.weights);
}
/**
* Parameterization class.
*
* @author Erich Schubert
*
* @apiviz.exclude
*/
public static class Parameterizer extends AbstractParameterizer {
/**
* Weight array
*/
protected double[] weights;
@Override
protected void makeOptions(Parameterization config) {
super.makeOptions(config);
DoubleListParameter weightsP = new DoubleListParameter(WEIGHTS_ID);
if(config.grab(weightsP)) {
weights = weightsP.getValue().clone();
}
}
@Override
protected WeightedEuclideanDistanceFunction makeInstance() {
return new WeightedEuclideanDistanceFunction(weights);
}
}
}