All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.fasteasytrade.jrandtest.algo.MicaliSchnorrPrng Maven / Gradle / Ivy

/*
 * Created on 31/03/2005
 *
 * JRandTest package
 *
 * Copyright (c) 2005, Zur Aougav, [email protected]
 * All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without modification, 
 * are permitted provided that the following conditions are met:
 * 
 * Redistributions of source code must retain the above copyright notice, this list 
 * of conditions and the following disclaimer. 
 * 
 * Redistributions in binary form must reproduce the above copyright notice, this 
 * list of conditions and the following disclaimer in the documentation and/or 
 * other materials provided with the distribution. 
 * 
 * Neither the name of the JRandTest nor the names of its contributors may be 
 * used to endorse or promote products derived from this software without specific 
 * prior written permission. 
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND 
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED 
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
 * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR 
 * ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON 
 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS 
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

package com.fasteasytrade.jrandtest.algo;

import java.math.BigInteger;
import java.util.Random;

/**
 * Micali-Schnorr Prng algorithm.
 * 

*

* Implements algorithm directly from public published book. *

* The following program implements and tests the Micali-Schnorr random bits * generator. The test suite is according to FIPS 140-1. See "Handbook of * Applied Cryptography" by Alfred J. Menezes et al Section 5.4.4 pages 181 - * 183 and 5.37 Algorithm page 186. * * @author Zur Aougav */ public class MicaliSchnorrPrng extends Cipher { /** * n's length/num of bits */ final int bit_length = 1024; /** * n = p * q, and calculations are done mod n. */ BigInteger n; /** * prime (with probability < 2 ** -100) */ BigInteger p; /** * prime (with probability < 2 ** -100) */ BigInteger q; /** * x is the "state" of the prng. *

* x = take r high bits of ( x**e mod n ). *

* returns k random bits from k low bits of ( x**e mod n ). */ BigInteger x; /** * x0 is the "initial state" of the prng. *

* reset method set x to x0. */ BigInteger x0; /** * e is a random exponent we calculate on generation (in setup method) */ BigInteger e; /** * nLength is length of n */ int nLength; /** * nLength = r + k *

* k is the number of low bits we will use in the prng */ int k; /** * nLength = r + k *

* r is the number of high bits we will use in the prng */ int r; MicaliSchnorrPrng() { setup(bit_length); } MicaliSchnorrPrng(int x) { if (x < bit_length) { setup(bit_length); } else { setup(x); } } MicaliSchnorrPrng(BigInteger n, BigInteger p, BigInteger q) { this.n = n; this.p = p; this.q = q; } MicaliSchnorrPrng(BigInteger n, BigInteger p, BigInteger q, BigInteger x) { this.n = n; this.p = p; this.q = q; this.x = x; x0 = x; } /** * Generate the key and seed for Micali Schnorr Prng. *

* Select random p, q, n=p*q, x (mod n). * * @param l * length of n, num of bits. */ boolean setup(int l) { if (l < 8 * 80) { l = 8 * 80; } int len = l / 2; Random rand = new Random(); p = BigInteger.probablePrime(len, rand); q = BigInteger.probablePrime(len, rand); /* * n = p * q */ n = p.multiply(q); /* * phi = phi(n) = (p-1) * (q-1) */ BigInteger phi = p.subtract(BigInteger.ONE).multiply(q.subtract(BigInteger.ONE)); nLength = phi.bitLength() + 1; BigInteger NI = new BigInteger("" + nLength); BigInteger BI80 = new BigInteger("" + 80); /* * find exponent e. e is a random number. 1 < e < phi. gcd(e, phi) = 1. * 80e < nLength. */ BigInteger d, s; int counter = 0; // to control loops over 10 times do { /** * control loop over 10 times. We recalculate setup method. */ if (++counter > 10) { return setup(l); } /** * r.nextInt(nLength/80-7) is a number between 0 and nLength/80-8, * so r.nextInt(nLength/80-7)+7 is a number between 7 and * nLength/80-1. *

* The net result is a random e with 7 <= e < nLength/80. Hence, 80e < * nLength. */ e = BigInteger.valueOf(rand.nextInt(nLength / 80 - 7) + 7); d = phi.gcd(e); s = e.multiply(BI80); System.out.println("random e=" + e + ", d=" + d + ", s=" + s); } while (d.compareTo(BigInteger.ONE) != 0 || s.compareTo(NI) >= 0); k = (int)(nLength * (1.0 - 2.0 / e.doubleValue())); r = nLength - k; System.out.println("nLength=" + nLength + ", r=" + r + ", k=" + k + ", e=" + e); x = BigInteger.probablePrime(r, rand); x0 = x; return true; } /** * calculate x**e mod n and returns lowest k bits, k/8 bytes, in result * buffer. * */ public void getNextBits(byte[] result) { BigInteger y = x.modPow(e, n); /** * nLength = r + k. r the high bits of y are kept in x. So we remove * right k low bits. */ x = y.shiftRight(k); /** * returns k low bits, k/8 bytes. we assume result length = k.8 bytes. */ byte[] array = y.toByteArray(); int numBytes = k / 8; int j = array.length - numBytes; for (int i = 0; i < numBytes && i < result.length; i++) { result[i] = array[j++]; } } /** * Secret key. * * @return p prime (with probability < 2 ** -100) */ public BigInteger getP() { return p; } /** * Secret key (need only one of p or q). * * @return q prime (with probability < 2 ** -100) */ public BigInteger getQ() { return q; } /** * Public key. * * @return n = p * q */ public BigInteger getN() { return n; } /** * @return random exponent e */ public BigInteger getE() { return e; } /** * Encryption: you need to get last x and write it to cipher output stream. *

* Decryption: you need to read "last x" from input stream, and calculate * X0, the first x based on n (public key), p and q (secret key/keys). * * @return current x */ public BigInteger getX() { return x; } /** * @return length of n */ public int getNLength() { return nLength; } /** * @return k */ public int getK() { return k; } /** * @return r */ public int getR() { return r; } /** * Reset "state" of prng by setting x to x0 (initial x). * */ public void reset() { x = x0; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy