All Downloads are FREE. Search and download functionalities are using the official Maven repository.

META-INF.modules.java.base.classes.java.util.stream.BaseStream Maven / Gradle / Ivy

There is a newer version: 2024-05-10
Show newest version
/*
 * Copyright (c) 2012, 2013, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */
package java.util.stream;

import java.nio.charset.Charset;
import java.nio.file.Files;
import java.nio.file.Path;
import java.util.Collection;
import java.util.Iterator;
import java.util.Spliterator;
import java.util.concurrent.ConcurrentHashMap;
import java.util.function.IntConsumer;
import java.util.function.Predicate;

/**
 * Base interface for streams, which are sequences of elements supporting
 * sequential and parallel aggregate operations.  The following example
 * illustrates an aggregate operation using the stream types {@link Stream}
 * and {@link IntStream}, computing the sum of the weights of the red widgets:
 *
 * 
{@code
 *     int sum = widgets.stream()
 *                      .filter(w -> w.getColor() == RED)
 *                      .mapToInt(w -> w.getWeight())
 *                      .sum();
 * }
* * See the class documentation for {@link Stream} and the package documentation * for java.util.stream for additional * specification of streams, stream operations, stream pipelines, and * parallelism, which governs the behavior of all stream types. * * @param the type of the stream elements * @param the type of the stream implementing {@code BaseStream} * @since 1.8 * @see Stream * @see IntStream * @see LongStream * @see DoubleStream * @see java.util.stream */ public interface BaseStream> extends AutoCloseable { /** * Returns an iterator for the elements of this stream. * *

This is a terminal * operation. * * @return the element iterator for this stream */ Iterator iterator(); /** * Returns a spliterator for the elements of this stream. * *

This is a terminal * operation. * *

* The returned spliterator should report the set of characteristics derived * from the stream pipeline (namely the characteristics derived from the * stream source spliterator and the intermediate operations). * Implementations may report a sub-set of those characteristics. For * example, it may be too expensive to compute the entire set for some or * all possible stream pipelines. * * @return the element spliterator for this stream */ Spliterator spliterator(); /** * Returns whether this stream, if a terminal operation were to be executed, * would execute in parallel. Calling this method after invoking an * terminal stream operation method may yield unpredictable results. * * @return {@code true} if this stream would execute in parallel if executed */ boolean isParallel(); /** * Returns an equivalent stream that is sequential. May return * itself, either because the stream was already sequential, or because * the underlying stream state was modified to be sequential. * *

This is an intermediate * operation. * * @return a sequential stream */ S sequential(); /** * Returns an equivalent stream that is parallel. May return * itself, either because the stream was already parallel, or because * the underlying stream state was modified to be parallel. * *

This is an intermediate * operation. * * @return a parallel stream */ S parallel(); /** * Returns an equivalent stream that is * unordered. May return * itself, either because the stream was already unordered, or because * the underlying stream state was modified to be unordered. * *

This is an intermediate * operation. * * @return an unordered stream */ S unordered(); /** * Returns an equivalent stream with an additional close handler. Close * handlers are run when the {@link #close()} method * is called on the stream, and are executed in the order they were * added. All close handlers are run, even if earlier close handlers throw * exceptions. If any close handler throws an exception, the first * exception thrown will be relayed to the caller of {@code close()}, with * any remaining exceptions added to that exception as suppressed exceptions * (unless one of the remaining exceptions is the same exception as the * first exception, since an exception cannot suppress itself.) May * return itself. * *

This is an intermediate * operation. * * @param closeHandler A task to execute when the stream is closed * @return a stream with a handler that is run if the stream is closed */ S onClose(Runnable closeHandler); /** * Closes this stream, causing all close handlers for this stream pipeline * to be called. * * @see AutoCloseable#close() */ @Override void close(); }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy