META-INF.modules.java.base.classes.java.util.ArrayPrefixHelpers Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java.base Show documentation
Show all versions of java.base Show documentation
Bytecoder java.base Module
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util;
import java.util.concurrent.CountedCompleter;
import java.util.concurrent.ForkJoinPool;
import java.util.function.BinaryOperator;
import java.util.function.DoubleBinaryOperator;
import java.util.function.IntBinaryOperator;
import java.util.function.LongBinaryOperator;
/**
* ForkJoin tasks to perform Arrays.parallelPrefix operations.
*
* @author Doug Lea
* @since 1.8
*/
class ArrayPrefixHelpers {
private ArrayPrefixHelpers() {} // non-instantiable
/*
* Parallel prefix (aka cumulate, scan) task classes
* are based loosely on Guy Blelloch's original
* algorithm (http://www.cs.cmu.edu/~scandal/alg/scan.html):
* Keep dividing by two to threshold segment size, and then:
* Pass 1: Create tree of partial sums for each segment
* Pass 2: For each segment, cumulate with offset of left sibling
*
* This version improves performance within FJ framework mainly by
* allowing the second pass of ready left-hand sides to proceed
* even if some right-hand side first passes are still executing.
* It also combines first and second pass for leftmost segment,
* and skips the first pass for rightmost segment (whose result is
* not needed for second pass). It similarly manages to avoid
* requiring that users supply an identity basis for accumulations
* by tracking those segments/subtasks for which the first
* existing element is used as base.
*
* Managing this relies on ORing some bits in the pendingCount for
* phases/states: CUMULATE, SUMMED, and FINISHED. CUMULATE is the
* main phase bit. When false, segments compute only their sum.
* When true, they cumulate array elements. CUMULATE is set at
* root at beginning of second pass and then propagated down. But
* it may also be set earlier for subtrees with lo==0 (the left
* spine of tree). SUMMED is a one bit join count. For leafs, it
* is set when summed. For internal nodes, it becomes true when
* one child is summed. When the second child finishes summing,
* we then moves up tree to trigger the cumulate phase. FINISHED
* is also a one bit join count. For leafs, it is set when
* cumulated. For internal nodes, it becomes true when one child
* is cumulated. When the second child finishes cumulating, it
* then moves up tree, completing at the root.
*
* To better exploit locality and reduce overhead, the compute
* method loops starting with the current task, moving if possible
* to one of its subtasks rather than forking.
*
* As usual for this sort of utility, there are 4 versions, that
* are simple copy/paste/adapt variants of each other. (The
* double and int versions differ from long version solely by
* replacing "long" (with case-matching)).
*/
// see above
static final int CUMULATE = 1;
static final int SUMMED = 2;
static final int FINISHED = 4;
/** The smallest subtask array partition size to use as threshold */
static final int MIN_PARTITION = 16;
static final class CumulateTask extends CountedCompleter {
final T[] array;
final BinaryOperator function;
CumulateTask left, right;
T in, out;
final int lo, hi, origin, fence, threshold;
/** Root task constructor */
public CumulateTask(CumulateTask parent,
BinaryOperator function,
T[] array, int lo, int hi) {
super(parent);
this.function = function; this.array = array;
this.lo = this.origin = lo; this.hi = this.fence = hi;
int p;
this.threshold =
(p = (hi - lo) / (ForkJoinPool.getCommonPoolParallelism() << 3))
<= MIN_PARTITION ? MIN_PARTITION : p;
}
/** Subtask constructor */
CumulateTask(CumulateTask parent, BinaryOperator function,
T[] array, int origin, int fence, int threshold,
int lo, int hi) {
super(parent);
this.function = function; this.array = array;
this.origin = origin; this.fence = fence;
this.threshold = threshold;
this.lo = lo; this.hi = hi;
}
public final void compute() {
final BinaryOperator fn;
final T[] a;
if ((fn = this.function) == null || (a = this.array) == null)
throw new NullPointerException(); // hoist checks
int th = threshold, org = origin, fnc = fence, l, h;
CumulateTask t = this;
outer: while ((l = t.lo) >= 0 && (h = t.hi) <= a.length) {
if (h - l > th) {
CumulateTask lt = t.left, rt = t.right, f;
if (lt == null) { // first pass
int mid = (l + h) >>> 1;
f = rt = t.right =
new CumulateTask(t, fn, a, org, fnc, th, mid, h);
t = lt = t.left =
new CumulateTask(t, fn, a, org, fnc, th, l, mid);
}
else { // possibly refork
T pin = t.in;
lt.in = pin;
f = t = null;
if (rt != null) {
T lout = lt.out;
rt.in = (l == org ? lout :
fn.apply(pin, lout));
for (int c;;) {
if (((c = rt.getPendingCount()) & CUMULATE) != 0)
break;
if (rt.compareAndSetPendingCount(c, c|CUMULATE)){
t = rt;
break;
}
}
}
for (int c;;) {
if (((c = lt.getPendingCount()) & CUMULATE) != 0)
break;
if (lt.compareAndSetPendingCount(c, c|CUMULATE)) {
if (t != null)
f = t;
t = lt;
break;
}
}
if (t == null)
break;
}
if (f != null)
f.fork();
}
else {
int state; // Transition to sum, cumulate, or both
for (int b;;) {
if (((b = t.getPendingCount()) & FINISHED) != 0)
break outer; // already done
state = ((b & CUMULATE) != 0 ? FINISHED :
(l > org) ? SUMMED : (SUMMED|FINISHED));
if (t.compareAndSetPendingCount(b, b|state))
break;
}
T sum;
if (state != SUMMED) {
int first;
if (l == org) { // leftmost; no in
sum = a[org];
first = org + 1;
}
else {
sum = t.in;
first = l;
}
for (int i = first; i < h; ++i) // cumulate
a[i] = sum = fn.apply(sum, a[i]);
}
else if (h < fnc) { // skip rightmost
sum = a[l];
for (int i = l + 1; i < h; ++i) // sum only
sum = fn.apply(sum, a[i]);
}
else
sum = t.in;
t.out = sum;
for (CumulateTask par;;) { // propagate
@SuppressWarnings("unchecked") CumulateTask partmp
= (CumulateTask)t.getCompleter();
if ((par = partmp) == null) {
if ((state & FINISHED) != 0) // enable join
t.quietlyComplete();
break outer;
}
int b = par.getPendingCount();
if ((b & state & FINISHED) != 0)
t = par; // both done
else if ((b & state & SUMMED) != 0) { // both summed
int nextState; CumulateTask lt, rt;
if ((lt = par.left) != null &&
(rt = par.right) != null) {
T lout = lt.out;
par.out = (rt.hi == fnc ? lout :
fn.apply(lout, rt.out));
}
int refork = (((b & CUMULATE) == 0 &&
par.lo == org) ? CUMULATE : 0);
if ((nextState = b|state|refork) == b ||
par.compareAndSetPendingCount(b, nextState)) {
state = SUMMED; // drop finished
t = par;
if (refork != 0)
par.fork();
}
}
else if (par.compareAndSetPendingCount(b, b|state))
break outer; // sib not ready
}
}
}
}
private static final long serialVersionUID = 5293554502939613543L;
}
static final class LongCumulateTask extends CountedCompleter {
final long[] array;
final LongBinaryOperator function;
LongCumulateTask left, right;
long in, out;
final int lo, hi, origin, fence, threshold;
/** Root task constructor */
public LongCumulateTask(LongCumulateTask parent,
LongBinaryOperator function,
long[] array, int lo, int hi) {
super(parent);
this.function = function; this.array = array;
this.lo = this.origin = lo; this.hi = this.fence = hi;
int p;
this.threshold =
(p = (hi - lo) / (ForkJoinPool.getCommonPoolParallelism() << 3))
<= MIN_PARTITION ? MIN_PARTITION : p;
}
/** Subtask constructor */
LongCumulateTask(LongCumulateTask parent, LongBinaryOperator function,
long[] array, int origin, int fence, int threshold,
int lo, int hi) {
super(parent);
this.function = function; this.array = array;
this.origin = origin; this.fence = fence;
this.threshold = threshold;
this.lo = lo; this.hi = hi;
}
public final void compute() {
final LongBinaryOperator fn;
final long[] a;
if ((fn = this.function) == null || (a = this.array) == null)
throw new NullPointerException(); // hoist checks
int th = threshold, org = origin, fnc = fence, l, h;
LongCumulateTask t = this;
outer: while ((l = t.lo) >= 0 && (h = t.hi) <= a.length) {
if (h - l > th) {
LongCumulateTask lt = t.left, rt = t.right, f;
if (lt == null) { // first pass
int mid = (l + h) >>> 1;
f = rt = t.right =
new LongCumulateTask(t, fn, a, org, fnc, th, mid, h);
t = lt = t.left =
new LongCumulateTask(t, fn, a, org, fnc, th, l, mid);
}
else { // possibly refork
long pin = t.in;
lt.in = pin;
f = t = null;
if (rt != null) {
long lout = lt.out;
rt.in = (l == org ? lout :
fn.applyAsLong(pin, lout));
for (int c;;) {
if (((c = rt.getPendingCount()) & CUMULATE) != 0)
break;
if (rt.compareAndSetPendingCount(c, c|CUMULATE)){
t = rt;
break;
}
}
}
for (int c;;) {
if (((c = lt.getPendingCount()) & CUMULATE) != 0)
break;
if (lt.compareAndSetPendingCount(c, c|CUMULATE)) {
if (t != null)
f = t;
t = lt;
break;
}
}
if (t == null)
break;
}
if (f != null)
f.fork();
}
else {
int state; // Transition to sum, cumulate, or both
for (int b;;) {
if (((b = t.getPendingCount()) & FINISHED) != 0)
break outer; // already done
state = ((b & CUMULATE) != 0 ? FINISHED :
(l > org) ? SUMMED : (SUMMED|FINISHED));
if (t.compareAndSetPendingCount(b, b|state))
break;
}
long sum;
if (state != SUMMED) {
int first;
if (l == org) { // leftmost; no in
sum = a[org];
first = org + 1;
}
else {
sum = t.in;
first = l;
}
for (int i = first; i < h; ++i) // cumulate
a[i] = sum = fn.applyAsLong(sum, a[i]);
}
else if (h < fnc) { // skip rightmost
sum = a[l];
for (int i = l + 1; i < h; ++i) // sum only
sum = fn.applyAsLong(sum, a[i]);
}
else
sum = t.in;
t.out = sum;
for (LongCumulateTask par;;) { // propagate
if ((par = (LongCumulateTask)t.getCompleter()) == null) {
if ((state & FINISHED) != 0) // enable join
t.quietlyComplete();
break outer;
}
int b = par.getPendingCount();
if ((b & state & FINISHED) != 0)
t = par; // both done
else if ((b & state & SUMMED) != 0) { // both summed
int nextState; LongCumulateTask lt, rt;
if ((lt = par.left) != null &&
(rt = par.right) != null) {
long lout = lt.out;
par.out = (rt.hi == fnc ? lout :
fn.applyAsLong(lout, rt.out));
}
int refork = (((b & CUMULATE) == 0 &&
par.lo == org) ? CUMULATE : 0);
if ((nextState = b|state|refork) == b ||
par.compareAndSetPendingCount(b, nextState)) {
state = SUMMED; // drop finished
t = par;
if (refork != 0)
par.fork();
}
}
else if (par.compareAndSetPendingCount(b, b|state))
break outer; // sib not ready
}
}
}
}
private static final long serialVersionUID = -5074099945909284273L;
}
static final class DoubleCumulateTask extends CountedCompleter {
final double[] array;
final DoubleBinaryOperator function;
DoubleCumulateTask left, right;
double in, out;
final int lo, hi, origin, fence, threshold;
/** Root task constructor */
public DoubleCumulateTask(DoubleCumulateTask parent,
DoubleBinaryOperator function,
double[] array, int lo, int hi) {
super(parent);
this.function = function; this.array = array;
this.lo = this.origin = lo; this.hi = this.fence = hi;
int p;
this.threshold =
(p = (hi - lo) / (ForkJoinPool.getCommonPoolParallelism() << 3))
<= MIN_PARTITION ? MIN_PARTITION : p;
}
/** Subtask constructor */
DoubleCumulateTask(DoubleCumulateTask parent, DoubleBinaryOperator function,
double[] array, int origin, int fence, int threshold,
int lo, int hi) {
super(parent);
this.function = function; this.array = array;
this.origin = origin; this.fence = fence;
this.threshold = threshold;
this.lo = lo; this.hi = hi;
}
public final void compute() {
final DoubleBinaryOperator fn;
final double[] a;
if ((fn = this.function) == null || (a = this.array) == null)
throw new NullPointerException(); // hoist checks
int th = threshold, org = origin, fnc = fence, l, h;
DoubleCumulateTask t = this;
outer: while ((l = t.lo) >= 0 && (h = t.hi) <= a.length) {
if (h - l > th) {
DoubleCumulateTask lt = t.left, rt = t.right, f;
if (lt == null) { // first pass
int mid = (l + h) >>> 1;
f = rt = t.right =
new DoubleCumulateTask(t, fn, a, org, fnc, th, mid, h);
t = lt = t.left =
new DoubleCumulateTask(t, fn, a, org, fnc, th, l, mid);
}
else { // possibly refork
double pin = t.in;
lt.in = pin;
f = t = null;
if (rt != null) {
double lout = lt.out;
rt.in = (l == org ? lout :
fn.applyAsDouble(pin, lout));
for (int c;;) {
if (((c = rt.getPendingCount()) & CUMULATE) != 0)
break;
if (rt.compareAndSetPendingCount(c, c|CUMULATE)){
t = rt;
break;
}
}
}
for (int c;;) {
if (((c = lt.getPendingCount()) & CUMULATE) != 0)
break;
if (lt.compareAndSetPendingCount(c, c|CUMULATE)) {
if (t != null)
f = t;
t = lt;
break;
}
}
if (t == null)
break;
}
if (f != null)
f.fork();
}
else {
int state; // Transition to sum, cumulate, or both
for (int b;;) {
if (((b = t.getPendingCount()) & FINISHED) != 0)
break outer; // already done
state = ((b & CUMULATE) != 0 ? FINISHED :
(l > org) ? SUMMED : (SUMMED|FINISHED));
if (t.compareAndSetPendingCount(b, b|state))
break;
}
double sum;
if (state != SUMMED) {
int first;
if (l == org) { // leftmost; no in
sum = a[org];
first = org + 1;
}
else {
sum = t.in;
first = l;
}
for (int i = first; i < h; ++i) // cumulate
a[i] = sum = fn.applyAsDouble(sum, a[i]);
}
else if (h < fnc) { // skip rightmost
sum = a[l];
for (int i = l + 1; i < h; ++i) // sum only
sum = fn.applyAsDouble(sum, a[i]);
}
else
sum = t.in;
t.out = sum;
for (DoubleCumulateTask par;;) { // propagate
if ((par = (DoubleCumulateTask)t.getCompleter()) == null) {
if ((state & FINISHED) != 0) // enable join
t.quietlyComplete();
break outer;
}
int b = par.getPendingCount();
if ((b & state & FINISHED) != 0)
t = par; // both done
else if ((b & state & SUMMED) != 0) { // both summed
int nextState; DoubleCumulateTask lt, rt;
if ((lt = par.left) != null &&
(rt = par.right) != null) {
double lout = lt.out;
par.out = (rt.hi == fnc ? lout :
fn.applyAsDouble(lout, rt.out));
}
int refork = (((b & CUMULATE) == 0 &&
par.lo == org) ? CUMULATE : 0);
if ((nextState = b|state|refork) == b ||
par.compareAndSetPendingCount(b, nextState)) {
state = SUMMED; // drop finished
t = par;
if (refork != 0)
par.fork();
}
}
else if (par.compareAndSetPendingCount(b, b|state))
break outer; // sib not ready
}
}
}
}
private static final long serialVersionUID = -586947823794232033L;
}
static final class IntCumulateTask extends CountedCompleter {
final int[] array;
final IntBinaryOperator function;
IntCumulateTask left, right;
int in, out;
final int lo, hi, origin, fence, threshold;
/** Root task constructor */
public IntCumulateTask(IntCumulateTask parent,
IntBinaryOperator function,
int[] array, int lo, int hi) {
super(parent);
this.function = function; this.array = array;
this.lo = this.origin = lo; this.hi = this.fence = hi;
int p;
this.threshold =
(p = (hi - lo) / (ForkJoinPool.getCommonPoolParallelism() << 3))
<= MIN_PARTITION ? MIN_PARTITION : p;
}
/** Subtask constructor */
IntCumulateTask(IntCumulateTask parent, IntBinaryOperator function,
int[] array, int origin, int fence, int threshold,
int lo, int hi) {
super(parent);
this.function = function; this.array = array;
this.origin = origin; this.fence = fence;
this.threshold = threshold;
this.lo = lo; this.hi = hi;
}
public final void compute() {
final IntBinaryOperator fn;
final int[] a;
if ((fn = this.function) == null || (a = this.array) == null)
throw new NullPointerException(); // hoist checks
int th = threshold, org = origin, fnc = fence, l, h;
IntCumulateTask t = this;
outer: while ((l = t.lo) >= 0 && (h = t.hi) <= a.length) {
if (h - l > th) {
IntCumulateTask lt = t.left, rt = t.right, f;
if (lt == null) { // first pass
int mid = (l + h) >>> 1;
f = rt = t.right =
new IntCumulateTask(t, fn, a, org, fnc, th, mid, h);
t = lt = t.left =
new IntCumulateTask(t, fn, a, org, fnc, th, l, mid);
}
else { // possibly refork
int pin = t.in;
lt.in = pin;
f = t = null;
if (rt != null) {
int lout = lt.out;
rt.in = (l == org ? lout :
fn.applyAsInt(pin, lout));
for (int c;;) {
if (((c = rt.getPendingCount()) & CUMULATE) != 0)
break;
if (rt.compareAndSetPendingCount(c, c|CUMULATE)){
t = rt;
break;
}
}
}
for (int c;;) {
if (((c = lt.getPendingCount()) & CUMULATE) != 0)
break;
if (lt.compareAndSetPendingCount(c, c|CUMULATE)) {
if (t != null)
f = t;
t = lt;
break;
}
}
if (t == null)
break;
}
if (f != null)
f.fork();
}
else {
int state; // Transition to sum, cumulate, or both
for (int b;;) {
if (((b = t.getPendingCount()) & FINISHED) != 0)
break outer; // already done
state = ((b & CUMULATE) != 0 ? FINISHED :
(l > org) ? SUMMED : (SUMMED|FINISHED));
if (t.compareAndSetPendingCount(b, b|state))
break;
}
int sum;
if (state != SUMMED) {
int first;
if (l == org) { // leftmost; no in
sum = a[org];
first = org + 1;
}
else {
sum = t.in;
first = l;
}
for (int i = first; i < h; ++i) // cumulate
a[i] = sum = fn.applyAsInt(sum, a[i]);
}
else if (h < fnc) { // skip rightmost
sum = a[l];
for (int i = l + 1; i < h; ++i) // sum only
sum = fn.applyAsInt(sum, a[i]);
}
else
sum = t.in;
t.out = sum;
for (IntCumulateTask par;;) { // propagate
if ((par = (IntCumulateTask)t.getCompleter()) == null) {
if ((state & FINISHED) != 0) // enable join
t.quietlyComplete();
break outer;
}
int b = par.getPendingCount();
if ((b & state & FINISHED) != 0)
t = par; // both done
else if ((b & state & SUMMED) != 0) { // both summed
int nextState; IntCumulateTask lt, rt;
if ((lt = par.left) != null &&
(rt = par.right) != null) {
int lout = lt.out;
par.out = (rt.hi == fnc ? lout :
fn.applyAsInt(lout, rt.out));
}
int refork = (((b & CUMULATE) == 0 &&
par.lo == org) ? CUMULATE : 0);
if ((nextState = b|state|refork) == b ||
par.compareAndSetPendingCount(b, nextState)) {
state = SUMMED; // drop finished
t = par;
if (refork != 0)
par.fork();
}
}
else if (par.compareAndSetPendingCount(b, b|state))
break outer; // sib not ready
}
}
}
}
private static final long serialVersionUID = 3731755594596840961L;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy