META-INF.modules.java.base.classes.java.util.Vector Maven / Gradle / Ivy
/*
* Copyright (c) 1994, 2018, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util;
import java.io.IOException;
import java.io.ObjectInputStream;
import java.io.StreamCorruptedException;
import java.util.function.Consumer;
import java.util.function.Predicate;
import java.util.function.UnaryOperator;
/**
* The {@code Vector} class implements a growable array of
* objects. Like an array, it contains components that can be
* accessed using an integer index. However, the size of a
* {@code Vector} can grow or shrink as needed to accommodate
* adding and removing items after the {@code Vector} has been created.
*
* Each vector tries to optimize storage management by maintaining a
* {@code capacity} and a {@code capacityIncrement}. The
* {@code capacity} is always at least as large as the vector
* size; it is usually larger because as components are added to the
* vector, the vector's storage increases in chunks the size of
* {@code capacityIncrement}. An application can increase the
* capacity of a vector before inserting a large number of
* components; this reduces the amount of incremental reallocation.
*
*
* The iterators returned by this class's {@link #iterator() iterator} and
* {@link #listIterator(int) listIterator} methods are fail-fast:
* if the vector is structurally modified at any time after the iterator is
* created, in any way except through the iterator's own
* {@link ListIterator#remove() remove} or
* {@link ListIterator#add(Object) add} methods, the iterator will throw a
* {@link ConcurrentModificationException}. Thus, in the face of
* concurrent modification, the iterator fails quickly and cleanly, rather
* than risking arbitrary, non-deterministic behavior at an undetermined
* time in the future. The {@link Enumeration Enumerations} returned by
* the {@link #elements() elements} method are not fail-fast; if the
* Vector is structurally modified at any time after the enumeration is
* created then the results of enumerating are undefined.
*
*
Note that the fail-fast behavior of an iterator cannot be guaranteed
* as it is, generally speaking, impossible to make any hard guarantees in the
* presence of unsynchronized concurrent modification. Fail-fast iterators
* throw {@code ConcurrentModificationException} on a best-effort basis.
* Therefore, it would be wrong to write a program that depended on this
* exception for its correctness: the fail-fast behavior of iterators
* should be used only to detect bugs.
*
*
As of the Java 2 platform v1.2, this class was retrofitted to
* implement the {@link List} interface, making it a member of the
*
* Java Collections Framework. Unlike the new collection
* implementations, {@code Vector} is synchronized. If a thread-safe
* implementation is not needed, it is recommended to use {@link
* ArrayList} in place of {@code Vector}.
*
* @param Type of component elements
*
* @author Lee Boynton
* @author Jonathan Payne
* @see Collection
* @see LinkedList
* @since 1.0
*/
public class Vector
extends AbstractList
implements List, RandomAccess, Cloneable, java.io.Serializable
{
/**
* The array buffer into which the components of the vector are
* stored. The capacity of the vector is the length of this array buffer,
* and is at least large enough to contain all the vector's elements.
*
* Any array elements following the last element in the Vector are null.
*
* @serial
*/
protected Object[] elementData;
/**
* The number of valid components in this {@code Vector} object.
* Components {@code elementData[0]} through
* {@code elementData[elementCount-1]} are the actual items.
*
* @serial
*/
protected int elementCount;
/**
* The amount by which the capacity of the vector is automatically
* incremented when its size becomes greater than its capacity. If
* the capacity increment is less than or equal to zero, the capacity
* of the vector is doubled each time it needs to grow.
*
* @serial
*/
protected int capacityIncrement;
/** use serialVersionUID from JDK 1.0.2 for interoperability */
private static final long serialVersionUID = -2767605614048989439L;
/**
* Constructs an empty vector with the specified initial capacity and
* capacity increment.
*
* @param initialCapacity the initial capacity of the vector
* @param capacityIncrement the amount by which the capacity is
* increased when the vector overflows
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
public Vector(int initialCapacity, int capacityIncrement) {
super();
if (initialCapacity < 0)
throw new IllegalArgumentException("Illegal Capacity: "+
initialCapacity);
this.elementData = new Object[initialCapacity];
this.capacityIncrement = capacityIncrement;
}
/**
* Constructs an empty vector with the specified initial capacity and
* with its capacity increment equal to zero.
*
* @param initialCapacity the initial capacity of the vector
* @throws IllegalArgumentException if the specified initial capacity
* is negative
*/
public Vector(int initialCapacity) {
this(initialCapacity, 0);
}
/**
* Constructs an empty vector so that its internal data array
* has size {@code 10} and its standard capacity increment is
* zero.
*/
public Vector() {
this(10);
}
/**
* Constructs a vector containing the elements of the specified
* collection, in the order they are returned by the collection's
* iterator.
*
* @param c the collection whose elements are to be placed into this
* vector
* @throws NullPointerException if the specified collection is null
* @since 1.2
*/
public Vector(Collection extends E> c) {
elementData = c.toArray();
elementCount = elementData.length;
// defend against c.toArray (incorrectly) not returning Object[]
// (see e.g. https://bugs.openjdk.java.net/browse/JDK-6260652)
if (elementData.getClass() != Object[].class)
elementData = Arrays.copyOf(elementData, elementCount, Object[].class);
}
/**
* Copies the components of this vector into the specified array.
* The item at index {@code k} in this vector is copied into
* component {@code k} of {@code anArray}.
*
* @param anArray the array into which the components get copied
* @throws NullPointerException if the given array is null
* @throws IndexOutOfBoundsException if the specified array is not
* large enough to hold all the components of this vector
* @throws ArrayStoreException if a component of this vector is not of
* a runtime type that can be stored in the specified array
* @see #toArray(Object[])
*/
public synchronized void copyInto(Object[] anArray) {
System.arraycopy(elementData, 0, anArray, 0, elementCount);
}
/**
* Trims the capacity of this vector to be the vector's current
* size. If the capacity of this vector is larger than its current
* size, then the capacity is changed to equal the size by replacing
* its internal data array, kept in the field {@code elementData},
* with a smaller one. An application can use this operation to
* minimize the storage of a vector.
*/
public synchronized void trimToSize() {
modCount++;
int oldCapacity = elementData.length;
if (elementCount < oldCapacity) {
elementData = Arrays.copyOf(elementData, elementCount);
}
}
/**
* Increases the capacity of this vector, if necessary, to ensure
* that it can hold at least the number of components specified by
* the minimum capacity argument.
*
*
If the current capacity of this vector is less than
* {@code minCapacity}, then its capacity is increased by replacing its
* internal data array, kept in the field {@code elementData}, with a
* larger one. The size of the new data array will be the old size plus
* {@code capacityIncrement}, unless the value of
* {@code capacityIncrement} is less than or equal to zero, in which case
* the new capacity will be twice the old capacity; but if this new size
* is still smaller than {@code minCapacity}, then the new capacity will
* be {@code minCapacity}.
*
* @param minCapacity the desired minimum capacity
*/
public synchronized void ensureCapacity(int minCapacity) {
if (minCapacity > 0) {
modCount++;
if (minCapacity > elementData.length)
grow(minCapacity);
}
}
/**
* The maximum size of array to allocate (unless necessary).
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* Increases the capacity to ensure that it can hold at least the
* number of elements specified by the minimum capacity argument.
*
* @param minCapacity the desired minimum capacity
* @throws OutOfMemoryError if minCapacity is less than zero
*/
private Object[] grow(int minCapacity) {
return elementData = Arrays.copyOf(elementData,
newCapacity(minCapacity));
}
private Object[] grow() {
return grow(elementCount + 1);
}
/**
* Returns a capacity at least as large as the given minimum capacity.
* Will not return a capacity greater than MAX_ARRAY_SIZE unless
* the given minimum capacity is greater than MAX_ARRAY_SIZE.
*
* @param minCapacity the desired minimum capacity
* @throws OutOfMemoryError if minCapacity is less than zero
*/
private int newCapacity(int minCapacity) {
// overflow-conscious code
int oldCapacity = elementData.length;
int newCapacity = oldCapacity + ((capacityIncrement > 0) ?
capacityIncrement : oldCapacity);
if (newCapacity - minCapacity <= 0) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return minCapacity;
}
return (newCapacity - MAX_ARRAY_SIZE <= 0)
? newCapacity
: hugeCapacity(minCapacity);
}
private static int hugeCapacity(int minCapacity) {
if (minCapacity < 0) // overflow
throw new OutOfMemoryError();
return (minCapacity > MAX_ARRAY_SIZE) ?
Integer.MAX_VALUE :
MAX_ARRAY_SIZE;
}
/**
* Sets the size of this vector. If the new size is greater than the
* current size, new {@code null} items are added to the end of
* the vector. If the new size is less than the current size, all
* components at index {@code newSize} and greater are discarded.
*
* @param newSize the new size of this vector
* @throws ArrayIndexOutOfBoundsException if the new size is negative
*/
public synchronized void setSize(int newSize) {
modCount++;
if (newSize > elementData.length)
grow(newSize);
final Object[] es = elementData;
for (int to = elementCount, i = newSize; i < to; i++)
es[i] = null;
elementCount = newSize;
}
/**
* Returns the current capacity of this vector.
*
* @return the current capacity (the length of its internal
* data array, kept in the field {@code elementData}
* of this vector)
*/
public synchronized int capacity() {
return elementData.length;
}
/**
* Returns the number of components in this vector.
*
* @return the number of components in this vector
*/
public synchronized int size() {
return elementCount;
}
/**
* Tests if this vector has no components.
*
* @return {@code true} if and only if this vector has
* no components, that is, its size is zero;
* {@code false} otherwise.
*/
public synchronized boolean isEmpty() {
return elementCount == 0;
}
/**
* Returns an enumeration of the components of this vector. The
* returned {@code Enumeration} object will generate all items in
* this vector. The first item generated is the item at index {@code 0},
* then the item at index {@code 1}, and so on. If the vector is
* structurally modified while enumerating over the elements then the
* results of enumerating are undefined.
*
* @return an enumeration of the components of this vector
* @see Iterator
*/
public Enumeration elements() {
return new Enumeration() {
int count = 0;
public boolean hasMoreElements() {
return count < elementCount;
}
public E nextElement() {
synchronized (Vector.this) {
if (count < elementCount) {
return elementData(count++);
}
}
throw new NoSuchElementException("Vector Enumeration");
}
};
}
/**
* Returns {@code true} if this vector contains the specified element.
* More formally, returns {@code true} if and only if this vector
* contains at least one element {@code e} such that
* {@code Objects.equals(o, e)}.
*
* @param o element whose presence in this vector is to be tested
* @return {@code true} if this vector contains the specified element
*/
public boolean contains(Object o) {
return indexOf(o, 0) >= 0;
}
/**
* Returns the index of the first occurrence of the specified element
* in this vector, or -1 if this vector does not contain the element.
* More formally, returns the lowest index {@code i} such that
* {@code Objects.equals(o, get(i))},
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the first occurrence of the specified element in
* this vector, or -1 if this vector does not contain the element
*/
public int indexOf(Object o) {
return indexOf(o, 0);
}
/**
* Returns the index of the first occurrence of the specified element in
* this vector, searching forwards from {@code index}, or returns -1 if
* the element is not found.
* More formally, returns the lowest index {@code i} such that
* {@code (i >= index && Objects.equals(o, get(i)))},
* or -1 if there is no such index.
*
* @param o element to search for
* @param index index to start searching from
* @return the index of the first occurrence of the element in
* this vector at position {@code index} or later in the vector;
* {@code -1} if the element is not found.
* @throws IndexOutOfBoundsException if the specified index is negative
* @see Object#equals(Object)
*/
public synchronized int indexOf(Object o, int index) {
if (o == null) {
for (int i = index ; i < elementCount ; i++)
if (elementData[i]==null)
return i;
} else {
for (int i = index ; i < elementCount ; i++)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* Returns the index of the last occurrence of the specified element
* in this vector, or -1 if this vector does not contain the element.
* More formally, returns the highest index {@code i} such that
* {@code Objects.equals(o, get(i))},
* or -1 if there is no such index.
*
* @param o element to search for
* @return the index of the last occurrence of the specified element in
* this vector, or -1 if this vector does not contain the element
*/
public synchronized int lastIndexOf(Object o) {
return lastIndexOf(o, elementCount-1);
}
/**
* Returns the index of the last occurrence of the specified element in
* this vector, searching backwards from {@code index}, or returns -1 if
* the element is not found.
* More formally, returns the highest index {@code i} such that
* {@code (i <= index && Objects.equals(o, get(i)))},
* or -1 if there is no such index.
*
* @param o element to search for
* @param index index to start searching backwards from
* @return the index of the last occurrence of the element at position
* less than or equal to {@code index} in this vector;
* -1 if the element is not found.
* @throws IndexOutOfBoundsException if the specified index is greater
* than or equal to the current size of this vector
*/
public synchronized int lastIndexOf(Object o, int index) {
if (index >= elementCount)
throw new IndexOutOfBoundsException(index + " >= "+ elementCount);
if (o == null) {
for (int i = index; i >= 0; i--)
if (elementData[i]==null)
return i;
} else {
for (int i = index; i >= 0; i--)
if (o.equals(elementData[i]))
return i;
}
return -1;
}
/**
* Returns the component at the specified index.
*
* This method is identical in functionality to the {@link #get(int)}
* method (which is part of the {@link List} interface).
*
* @param index an index into this vector
* @return the component at the specified index
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
*/
public synchronized E elementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " + elementCount);
}
return elementData(index);
}
/**
* Returns the first component (the item at index {@code 0}) of
* this vector.
*
* @return the first component of this vector
* @throws NoSuchElementException if this vector has no components
*/
public synchronized E firstElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(0);
}
/**
* Returns the last component of the vector.
*
* @return the last component of the vector, i.e., the component at index
* {@code size() - 1}
* @throws NoSuchElementException if this vector is empty
*/
public synchronized E lastElement() {
if (elementCount == 0) {
throw new NoSuchElementException();
}
return elementData(elementCount - 1);
}
/**
* Sets the component at the specified {@code index} of this
* vector to be the specified object. The previous component at that
* position is discarded.
*
*
The index must be a value greater than or equal to {@code 0}
* and less than the current size of the vector.
*
*
This method is identical in functionality to the
* {@link #set(int, Object) set(int, E)}
* method (which is part of the {@link List} interface). Note that the
* {@code set} method reverses the order of the parameters, to more closely
* match array usage. Note also that the {@code set} method returns the
* old value that was stored at the specified position.
*
* @param obj what the component is to be set to
* @param index the specified index
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
*/
public synchronized void setElementAt(E obj, int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
elementData[index] = obj;
}
/**
* Deletes the component at the specified index. Each component in
* this vector with an index greater or equal to the specified
* {@code index} is shifted downward to have an index one
* smaller than the value it had previously. The size of this vector
* is decreased by {@code 1}.
*
*
The index must be a value greater than or equal to {@code 0}
* and less than the current size of the vector.
*
*
This method is identical in functionality to the {@link #remove(int)}
* method (which is part of the {@link List} interface). Note that the
* {@code remove} method returns the old value that was stored at the
* specified position.
*
* @param index the index of the object to remove
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
*/
public synchronized void removeElementAt(int index) {
if (index >= elementCount) {
throw new ArrayIndexOutOfBoundsException(index + " >= " +
elementCount);
}
else if (index < 0) {
throw new ArrayIndexOutOfBoundsException(index);
}
int j = elementCount - index - 1;
if (j > 0) {
System.arraycopy(elementData, index + 1, elementData, index, j);
}
modCount++;
elementCount--;
elementData[elementCount] = null; /* to let gc do its work */
}
/**
* Inserts the specified object as a component in this vector at the
* specified {@code index}. Each component in this vector with
* an index greater or equal to the specified {@code index} is
* shifted upward to have an index one greater than the value it had
* previously.
*
*
The index must be a value greater than or equal to {@code 0}
* and less than or equal to the current size of the vector. (If the
* index is equal to the current size of the vector, the new element
* is appended to the Vector.)
*
*
This method is identical in functionality to the
* {@link #add(int, Object) add(int, E)}
* method (which is part of the {@link List} interface). Note that the
* {@code add} method reverses the order of the parameters, to more closely
* match array usage.
*
* @param obj the component to insert
* @param index where to insert the new component
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index > size()})
*/
public synchronized void insertElementAt(E obj, int index) {
if (index > elementCount) {
throw new ArrayIndexOutOfBoundsException(index
+ " > " + elementCount);
}
modCount++;
final int s = elementCount;
Object[] elementData = this.elementData;
if (s == elementData.length)
elementData = grow();
System.arraycopy(elementData, index,
elementData, index + 1,
s - index);
elementData[index] = obj;
elementCount = s + 1;
}
/**
* Adds the specified component to the end of this vector,
* increasing its size by one. The capacity of this vector is
* increased if its size becomes greater than its capacity.
*
*
This method is identical in functionality to the
* {@link #add(Object) add(E)}
* method (which is part of the {@link List} interface).
*
* @param obj the component to be added
*/
public synchronized void addElement(E obj) {
modCount++;
add(obj, elementData, elementCount);
}
/**
* Removes the first (lowest-indexed) occurrence of the argument
* from this vector. If the object is found in this vector, each
* component in the vector with an index greater or equal to the
* object's index is shifted downward to have an index one smaller
* than the value it had previously.
*
*
This method is identical in functionality to the
* {@link #remove(Object)} method (which is part of the
* {@link List} interface).
*
* @param obj the component to be removed
* @return {@code true} if the argument was a component of this
* vector; {@code false} otherwise.
*/
public synchronized boolean removeElement(Object obj) {
modCount++;
int i = indexOf(obj);
if (i >= 0) {
removeElementAt(i);
return true;
}
return false;
}
/**
* Removes all components from this vector and sets its size to zero.
*
*
This method is identical in functionality to the {@link #clear}
* method (which is part of the {@link List} interface).
*/
public synchronized void removeAllElements() {
final Object[] es = elementData;
for (int to = elementCount, i = elementCount = 0; i < to; i++)
es[i] = null;
modCount++;
}
/**
* Returns a clone of this vector. The copy will contain a
* reference to a clone of the internal data array, not a reference
* to the original internal data array of this {@code Vector} object.
*
* @return a clone of this vector
*/
public synchronized Object clone() {
try {
@SuppressWarnings("unchecked")
Vector v = (Vector) super.clone();
v.elementData = Arrays.copyOf(elementData, elementCount);
v.modCount = 0;
return v;
} catch (CloneNotSupportedException e) {
// this shouldn't happen, since we are Cloneable
throw new InternalError(e);
}
}
/**
* Returns an array containing all of the elements in this Vector
* in the correct order.
*
* @since 1.2
*/
public synchronized Object[] toArray() {
return Arrays.copyOf(elementData, elementCount);
}
/**
* Returns an array containing all of the elements in this Vector in the
* correct order; the runtime type of the returned array is that of the
* specified array. If the Vector fits in the specified array, it is
* returned therein. Otherwise, a new array is allocated with the runtime
* type of the specified array and the size of this Vector.
*
* If the Vector fits in the specified array with room to spare
* (i.e., the array has more elements than the Vector),
* the element in the array immediately following the end of the
* Vector is set to null. (This is useful in determining the length
* of the Vector only if the caller knows that the Vector
* does not contain any null elements.)
*
* @param type of array elements. The same type as {@code } or a
* supertype of {@code }.
* @param a the array into which the elements of the Vector are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose.
* @return an array containing the elements of the Vector
* @throws ArrayStoreException if the runtime type of a, {@code }, is not
* a supertype of the runtime type, {@code }, of every element in this
* Vector
* @throws NullPointerException if the given array is null
* @since 1.2
*/
@SuppressWarnings("unchecked")
public synchronized T[] toArray(T[] a) {
if (a.length < elementCount)
return (T[]) Arrays.copyOf(elementData, elementCount, a.getClass());
System.arraycopy(elementData, 0, a, 0, elementCount);
if (a.length > elementCount)
a[elementCount] = null;
return a;
}
// Positional Access Operations
@SuppressWarnings("unchecked")
E elementData(int index) {
return (E) elementData[index];
}
@SuppressWarnings("unchecked")
static E elementAt(Object[] es, int index) {
return (E) es[index];
}
/**
* Returns the element at the specified position in this Vector.
*
* @param index index of the element to return
* @return object at the specified index
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
* @since 1.2
*/
public synchronized E get(int index) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
return elementData(index);
}
/**
* Replaces the element at the specified position in this Vector with the
* specified element.
*
* @param index index of the element to replace
* @param element element to be stored at the specified position
* @return the element previously at the specified position
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
* @since 1.2
*/
public synchronized E set(int index, E element) {
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
elementData[index] = element;
return oldValue;
}
/**
* This helper method split out from add(E) to keep method
* bytecode size under 35 (the -XX:MaxInlineSize default value),
* which helps when add(E) is called in a C1-compiled loop.
*/
private void add(E e, Object[] elementData, int s) {
if (s == elementData.length)
elementData = grow();
elementData[s] = e;
elementCount = s + 1;
}
/**
* Appends the specified element to the end of this Vector.
*
* @param e element to be appended to this Vector
* @return {@code true} (as specified by {@link Collection#add})
* @since 1.2
*/
public synchronized boolean add(E e) {
modCount++;
add(e, elementData, elementCount);
return true;
}
/**
* Removes the first occurrence of the specified element in this Vector
* If the Vector does not contain the element, it is unchanged. More
* formally, removes the element with the lowest index i such that
* {@code Objects.equals(o, get(i))} (if such
* an element exists).
*
* @param o element to be removed from this Vector, if present
* @return true if the Vector contained the specified element
* @since 1.2
*/
public boolean remove(Object o) {
return removeElement(o);
}
/**
* Inserts the specified element at the specified position in this Vector.
* Shifts the element currently at that position (if any) and any
* subsequent elements to the right (adds one to their indices).
*
* @param index index at which the specified element is to be inserted
* @param element element to be inserted
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index > size()})
* @since 1.2
*/
public void add(int index, E element) {
insertElementAt(element, index);
}
/**
* Removes the element at the specified position in this Vector.
* Shifts any subsequent elements to the left (subtracts one from their
* indices). Returns the element that was removed from the Vector.
*
* @param index the index of the element to be removed
* @return element that was removed
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index >= size()})
* @since 1.2
*/
public synchronized E remove(int index) {
modCount++;
if (index >= elementCount)
throw new ArrayIndexOutOfBoundsException(index);
E oldValue = elementData(index);
int numMoved = elementCount - index - 1;
if (numMoved > 0)
System.arraycopy(elementData, index+1, elementData, index,
numMoved);
elementData[--elementCount] = null; // Let gc do its work
return oldValue;
}
/**
* Removes all of the elements from this Vector. The Vector will
* be empty after this call returns (unless it throws an exception).
*
* @since 1.2
*/
public void clear() {
removeAllElements();
}
// Bulk Operations
/**
* Returns true if this Vector contains all of the elements in the
* specified Collection.
*
* @param c a collection whose elements will be tested for containment
* in this Vector
* @return true if this Vector contains all of the elements in the
* specified collection
* @throws NullPointerException if the specified collection is null
*/
public synchronized boolean containsAll(Collection> c) {
return super.containsAll(c);
}
/**
* Appends all of the elements in the specified Collection to the end of
* this Vector, in the order that they are returned by the specified
* Collection's Iterator. The behavior of this operation is undefined if
* the specified Collection is modified while the operation is in progress.
* (This implies that the behavior of this call is undefined if the
* specified Collection is this Vector, and this Vector is nonempty.)
*
* @param c elements to be inserted into this Vector
* @return {@code true} if this Vector changed as a result of the call
* @throws NullPointerException if the specified collection is null
* @since 1.2
*/
public boolean addAll(Collection extends E> c) {
Object[] a = c.toArray();
modCount++;
int numNew = a.length;
if (numNew == 0)
return false;
synchronized (this) {
Object[] elementData = this.elementData;
final int s = elementCount;
if (numNew > elementData.length - s)
elementData = grow(s + numNew);
System.arraycopy(a, 0, elementData, s, numNew);
elementCount = s + numNew;
return true;
}
}
/**
* Removes from this Vector all of its elements that are contained in the
* specified Collection.
*
* @param c a collection of elements to be removed from the Vector
* @return true if this Vector changed as a result of the call
* @throws ClassCastException if the types of one or more elements
* in this vector are incompatible with the specified
* collection
* (optional)
* @throws NullPointerException if this vector contains one or more null
* elements and the specified collection does not support null
* elements
* (optional),
* or if the specified collection is null
* @since 1.2
*/
public boolean removeAll(Collection> c) {
Objects.requireNonNull(c);
return bulkRemove(e -> c.contains(e));
}
/**
* Retains only the elements in this Vector that are contained in the
* specified Collection. In other words, removes from this Vector all
* of its elements that are not contained in the specified Collection.
*
* @param c a collection of elements to be retained in this Vector
* (all other elements are removed)
* @return true if this Vector changed as a result of the call
* @throws ClassCastException if the types of one or more elements
* in this vector are incompatible with the specified
* collection
* (optional)
* @throws NullPointerException if this vector contains one or more null
* elements and the specified collection does not support null
* elements
* (optional),
* or if the specified collection is null
* @since 1.2
*/
public boolean retainAll(Collection> c) {
Objects.requireNonNull(c);
return bulkRemove(e -> !c.contains(e));
}
/**
* @throws NullPointerException {@inheritDoc}
*/
@Override
public boolean removeIf(Predicate super E> filter) {
Objects.requireNonNull(filter);
return bulkRemove(filter);
}
// A tiny bit set implementation
private static long[] nBits(int n) {
return new long[((n - 1) >> 6) + 1];
}
private static void setBit(long[] bits, int i) {
bits[i >> 6] |= 1L << i;
}
private static boolean isClear(long[] bits, int i) {
return (bits[i >> 6] & (1L << i)) == 0;
}
private synchronized boolean bulkRemove(Predicate super E> filter) {
int expectedModCount = modCount;
final Object[] es = elementData;
final int end = elementCount;
int i;
// Optimize for initial run of survivors
for (i = 0; i < end && !filter.test(elementAt(es, i)); i++)
;
// Tolerate predicates that reentrantly access the collection for
// read (but writers still get CME), so traverse once to find
// elements to delete, a second pass to physically expunge.
if (i < end) {
final int beg = i;
final long[] deathRow = nBits(end - beg);
deathRow[0] = 1L; // set bit 0
for (i = beg + 1; i < end; i++)
if (filter.test(elementAt(es, i)))
setBit(deathRow, i - beg);
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
modCount++;
int w = beg;
for (i = beg; i < end; i++)
if (isClear(deathRow, i - beg))
es[w++] = es[i];
for (i = elementCount = w; i < end; i++)
es[i] = null;
return true;
} else {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return false;
}
}
/**
* Inserts all of the elements in the specified Collection into this
* Vector at the specified position. Shifts the element currently at
* that position (if any) and any subsequent elements to the right
* (increases their indices). The new elements will appear in the Vector
* in the order that they are returned by the specified Collection's
* iterator.
*
* @param index index at which to insert the first element from the
* specified collection
* @param c elements to be inserted into this Vector
* @return {@code true} if this Vector changed as a result of the call
* @throws ArrayIndexOutOfBoundsException if the index is out of range
* ({@code index < 0 || index > size()})
* @throws NullPointerException if the specified collection is null
* @since 1.2
*/
public synchronized boolean addAll(int index, Collection extends E> c) {
if (index < 0 || index > elementCount)
throw new ArrayIndexOutOfBoundsException(index);
Object[] a = c.toArray();
modCount++;
int numNew = a.length;
if (numNew == 0)
return false;
Object[] elementData = this.elementData;
final int s = elementCount;
if (numNew > elementData.length - s)
elementData = grow(s + numNew);
int numMoved = s - index;
if (numMoved > 0)
System.arraycopy(elementData, index,
elementData, index + numNew,
numMoved);
System.arraycopy(a, 0, elementData, index, numNew);
elementCount = s + numNew;
return true;
}
/**
* Compares the specified Object with this Vector for equality. Returns
* true if and only if the specified Object is also a List, both Lists
* have the same size, and all corresponding pairs of elements in the two
* Lists are equal. (Two elements {@code e1} and
* {@code e2} are equal if {@code Objects.equals(e1, e2)}.)
* In other words, two Lists are defined to be
* equal if they contain the same elements in the same order.
*
* @param o the Object to be compared for equality with this Vector
* @return true if the specified Object is equal to this Vector
*/
public synchronized boolean equals(Object o) {
return super.equals(o);
}
/**
* Returns the hash code value for this Vector.
*/
public synchronized int hashCode() {
return super.hashCode();
}
/**
* Returns a string representation of this Vector, containing
* the String representation of each element.
*/
public synchronized String toString() {
return super.toString();
}
/**
* Returns a view of the portion of this List between fromIndex,
* inclusive, and toIndex, exclusive. (If fromIndex and toIndex are
* equal, the returned List is empty.) The returned List is backed by this
* List, so changes in the returned List are reflected in this List, and
* vice-versa. The returned List supports all of the optional List
* operations supported by this List.
*
* This method eliminates the need for explicit range operations (of
* the sort that commonly exist for arrays). Any operation that expects
* a List can be used as a range operation by operating on a subList view
* instead of a whole List. For example, the following idiom
* removes a range of elements from a List:
*
* list.subList(from, to).clear();
*
* Similar idioms may be constructed for indexOf and lastIndexOf,
* and all of the algorithms in the Collections class can be applied to
* a subList.
*
* The semantics of the List returned by this method become undefined if
* the backing list (i.e., this List) is structurally modified in
* any way other than via the returned List. (Structural modifications are
* those that change the size of the List, or otherwise perturb it in such
* a fashion that iterations in progress may yield incorrect results.)
*
* @param fromIndex low endpoint (inclusive) of the subList
* @param toIndex high endpoint (exclusive) of the subList
* @return a view of the specified range within this List
* @throws IndexOutOfBoundsException if an endpoint index value is out of range
* {@code (fromIndex < 0 || toIndex > size)}
* @throws IllegalArgumentException if the endpoint indices are out of order
* {@code (fromIndex > toIndex)}
*/
public synchronized List subList(int fromIndex, int toIndex) {
return Collections.synchronizedList(super.subList(fromIndex, toIndex),
this);
}
/**
* Removes from this list all of the elements whose index is between
* {@code fromIndex}, inclusive, and {@code toIndex}, exclusive.
* Shifts any succeeding elements to the left (reduces their index).
* This call shortens the list by {@code (toIndex - fromIndex)} elements.
* (If {@code toIndex==fromIndex}, this operation has no effect.)
*/
protected synchronized void removeRange(int fromIndex, int toIndex) {
modCount++;
shiftTailOverGap(elementData, fromIndex, toIndex);
}
/** Erases the gap from lo to hi, by sliding down following elements. */
private void shiftTailOverGap(Object[] es, int lo, int hi) {
System.arraycopy(es, hi, es, lo, elementCount - hi);
for (int to = elementCount, i = (elementCount -= hi - lo); i < to; i++)
es[i] = null;
}
/**
* Loads a {@code Vector} instance from a stream
* (that is, deserializes it).
* This method performs checks to ensure the consistency
* of the fields.
*
* @param in the stream
* @throws java.io.IOException if an I/O error occurs
* @throws ClassNotFoundException if the stream contains data
* of a non-existing class
*/
private void readObject(ObjectInputStream in)
throws IOException, ClassNotFoundException {
ObjectInputStream.GetField gfields = in.readFields();
int count = gfields.get("elementCount", 0);
Object[] data = (Object[])gfields.get("elementData", null);
if (count < 0 || data == null || count > data.length) {
throw new StreamCorruptedException("Inconsistent vector internals");
}
elementCount = count;
elementData = data.clone();
}
/**
* Saves the state of the {@code Vector} instance to a stream
* (that is, serializes it).
* This method performs synchronization to ensure the consistency
* of the serialized data.
*
* @param s the stream
* @throws java.io.IOException if an I/O error occurs
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
final java.io.ObjectOutputStream.PutField fields = s.putFields();
final Object[] data;
synchronized (this) {
fields.put("capacityIncrement", capacityIncrement);
fields.put("elementCount", elementCount);
data = elementData.clone();
}
fields.put("elementData", data);
s.writeFields();
}
/**
* Returns a list iterator over the elements in this list (in proper
* sequence), starting at the specified position in the list.
* The specified index indicates the first element that would be
* returned by an initial call to {@link ListIterator#next next}.
* An initial call to {@link ListIterator#previous previous} would
* return the element with the specified index minus one.
*
* The returned list iterator is fail-fast.
*
* @throws IndexOutOfBoundsException {@inheritDoc}
*/
public synchronized ListIterator listIterator(int index) {
if (index < 0 || index > elementCount)
throw new IndexOutOfBoundsException("Index: "+index);
return new ListItr(index);
}
/**
* Returns a list iterator over the elements in this list (in proper
* sequence).
*
* The returned list iterator is fail-fast.
*
* @see #listIterator(int)
*/
public synchronized ListIterator listIterator() {
return new ListItr(0);
}
/**
* Returns an iterator over the elements in this list in proper sequence.
*
* The returned iterator is fail-fast.
*
* @return an iterator over the elements in this list in proper sequence
*/
public synchronized Iterator iterator() {
return new Itr();
}
/**
* An optimized version of AbstractList.Itr
*/
private class Itr implements Iterator {
int cursor; // index of next element to return
int lastRet = -1; // index of last element returned; -1 if no such
int expectedModCount = modCount;
public boolean hasNext() {
// Racy but within spec, since modifications are checked
// within or after synchronization in next/previous
return cursor != elementCount;
}
public E next() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor;
if (i >= elementCount)
throw new NoSuchElementException();
cursor = i + 1;
return elementData(lastRet = i);
}
}
public void remove() {
if (lastRet == -1)
throw new IllegalStateException();
synchronized (Vector.this) {
checkForComodification();
Vector.this.remove(lastRet);
expectedModCount = modCount;
}
cursor = lastRet;
lastRet = -1;
}
@Override
public void forEachRemaining(Consumer super E> action) {
Objects.requireNonNull(action);
synchronized (Vector.this) {
final int size = elementCount;
int i = cursor;
if (i >= size) {
return;
}
final Object[] es = elementData;
if (i >= es.length)
throw new ConcurrentModificationException();
while (i < size && modCount == expectedModCount)
action.accept(elementAt(es, i++));
// update once at end of iteration to reduce heap write traffic
cursor = i;
lastRet = i - 1;
checkForComodification();
}
}
final void checkForComodification() {
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
}
/**
* An optimized version of AbstractList.ListItr
*/
final class ListItr extends Itr implements ListIterator {
ListItr(int index) {
super();
cursor = index;
}
public boolean hasPrevious() {
return cursor != 0;
}
public int nextIndex() {
return cursor;
}
public int previousIndex() {
return cursor - 1;
}
public E previous() {
synchronized (Vector.this) {
checkForComodification();
int i = cursor - 1;
if (i < 0)
throw new NoSuchElementException();
cursor = i;
return elementData(lastRet = i);
}
}
public void set(E e) {
if (lastRet == -1)
throw new IllegalStateException();
synchronized (Vector.this) {
checkForComodification();
Vector.this.set(lastRet, e);
}
}
public void add(E e) {
int i = cursor;
synchronized (Vector.this) {
checkForComodification();
Vector.this.add(i, e);
expectedModCount = modCount;
}
cursor = i + 1;
lastRet = -1;
}
}
/**
* @throws NullPointerException {@inheritDoc}
*/
@Override
public synchronized void forEach(Consumer super E> action) {
Objects.requireNonNull(action);
final int expectedModCount = modCount;
final Object[] es = elementData;
final int size = elementCount;
for (int i = 0; modCount == expectedModCount && i < size; i++)
action.accept(elementAt(es, i));
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
/**
* @throws NullPointerException {@inheritDoc}
*/
@Override
public synchronized void replaceAll(UnaryOperator operator) {
Objects.requireNonNull(operator);
final int expectedModCount = modCount;
final Object[] es = elementData;
final int size = elementCount;
for (int i = 0; modCount == expectedModCount && i < size; i++)
es[i] = operator.apply(elementAt(es, i));
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
modCount++;
}
@SuppressWarnings("unchecked")
@Override
public synchronized void sort(Comparator super E> c) {
final int expectedModCount = modCount;
Arrays.sort((E[]) elementData, 0, elementCount, c);
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
modCount++;
}
/**
* Creates a late-binding
* and fail-fast {@link Spliterator} over the elements in this
* list.
*
* The {@code Spliterator} reports {@link Spliterator#SIZED},
* {@link Spliterator#SUBSIZED}, and {@link Spliterator#ORDERED}.
* Overriding implementations should document the reporting of additional
* characteristic values.
*
* @return a {@code Spliterator} over the elements in this list
* @since 1.8
*/
@Override
public Spliterator spliterator() {
return new VectorSpliterator(null, 0, -1, 0);
}
/** Similar to ArrayList Spliterator */
final class VectorSpliterator implements Spliterator {
private Object[] array;
private int index; // current index, modified on advance/split
private int fence; // -1 until used; then one past last index
private int expectedModCount; // initialized when fence set
/** Creates new spliterator covering the given range. */
VectorSpliterator(Object[] array, int origin, int fence,
int expectedModCount) {
this.array = array;
this.index = origin;
this.fence = fence;
this.expectedModCount = expectedModCount;
}
private int getFence() { // initialize on first use
int hi;
if ((hi = fence) < 0) {
synchronized (Vector.this) {
array = elementData;
expectedModCount = modCount;
hi = fence = elementCount;
}
}
return hi;
}
public Spliterator trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new VectorSpliterator(array, lo, index = mid, expectedModCount);
}
@SuppressWarnings("unchecked")
public boolean tryAdvance(Consumer super E> action) {
Objects.requireNonNull(action);
int i;
if (getFence() > (i = index)) {
index = i + 1;
action.accept((E)array[i]);
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
return true;
}
return false;
}
@SuppressWarnings("unchecked")
public void forEachRemaining(Consumer super E> action) {
Objects.requireNonNull(action);
final int hi = getFence();
final Object[] a = array;
int i;
for (i = index, index = hi; i < hi; i++)
action.accept((E) a[i]);
if (modCount != expectedModCount)
throw new ConcurrentModificationException();
}
public long estimateSize() {
return getFence() - index;
}
public int characteristics() {
return Spliterator.ORDERED | Spliterator.SIZED | Spliterator.SUBSIZED;
}
}
void checkInvariants() {
// assert elementCount >= 0;
// assert elementCount == elementData.length || elementData[elementCount] == null;
}
}