All Downloads are FREE. Search and download functionalities are using the official Maven repository.

META-INF.modules.java.base.classes.java.lang.invoke.InvokerBytecodeGenerator Maven / Gradle / Ivy

There is a newer version: 2024-05-10
Show newest version
/*
 * Copyright (c) 2012, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang.invoke;

import jdk.internal.org.objectweb.asm.ClassWriter;
import jdk.internal.org.objectweb.asm.Label;
import jdk.internal.org.objectweb.asm.MethodVisitor;
import jdk.internal.org.objectweb.asm.Opcodes;
import jdk.internal.org.objectweb.asm.Type;
import sun.invoke.util.VerifyAccess;
import sun.invoke.util.VerifyType;
import sun.invoke.util.Wrapper;
import sun.reflect.misc.ReflectUtil;

import java.io.File;
import java.io.FileOutputStream;
import java.io.IOException;
import java.lang.reflect.Modifier;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.stream.Stream;

import static java.lang.invoke.LambdaForm.BasicType;
import static java.lang.invoke.LambdaForm.BasicType.*;
import static java.lang.invoke.LambdaForm.*;
import static java.lang.invoke.MethodHandleNatives.Constants.*;
import static java.lang.invoke.MethodHandleStatics.*;

/**
 * Code generation backend for LambdaForm.
 * 

* @author John Rose, JSR 292 EG */ class InvokerBytecodeGenerator { /** Define class names for convenience. */ private static final String MH = "java/lang/invoke/MethodHandle"; private static final String MHI = "java/lang/invoke/MethodHandleImpl"; private static final String LF = "java/lang/invoke/LambdaForm"; private static final String LFN = "java/lang/invoke/LambdaForm$Name"; private static final String CLS = "java/lang/Class"; private static final String OBJ = "java/lang/Object"; private static final String OBJARY = "[Ljava/lang/Object;"; private static final String LOOP_CLAUSES = MHI + "$LoopClauses"; private static final String MHARY2 = "[[L" + MH + ";"; private static final String LF_SIG = "L" + LF + ";"; private static final String LFN_SIG = "L" + LFN + ";"; private static final String LL_SIG = "(L" + OBJ + ";)L" + OBJ + ";"; private static final String LLV_SIG = "(L" + OBJ + ";L" + OBJ + ";)V"; private static final String CLASS_PREFIX = LF + "$"; private static final String SOURCE_PREFIX = "LambdaForm$"; /** Name of its super class*/ static final String INVOKER_SUPER_NAME = OBJ; /** Name of new class */ private final String className; private final LambdaForm lambdaForm; private final String invokerName; private final MethodType invokerType; /** Info about local variables in compiled lambda form */ private int[] localsMap; // index private Class[] localClasses; // type /** ASM bytecode generation. */ private ClassWriter cw; private MethodVisitor mv; /** Single element internal class name lookup cache. */ private Class lastClass; private String lastInternalName; private static final MemberName.Factory MEMBERNAME_FACTORY = MemberName.getFactory(); private static final Class HOST_CLASS = LambdaForm.class; /** Main constructor; other constructors delegate to this one. */ private InvokerBytecodeGenerator(LambdaForm lambdaForm, int localsMapSize, String className, String invokerName, MethodType invokerType) { int p = invokerName.indexOf('.'); if (p > -1) { className = invokerName.substring(0, p); invokerName = invokerName.substring(p + 1); } if (DUMP_CLASS_FILES) { className = makeDumpableClassName(className); } this.className = className; this.lambdaForm = lambdaForm; this.invokerName = invokerName; this.invokerType = invokerType; this.localsMap = new int[localsMapSize+1]; // last entry of localsMap is count of allocated local slots this.localClasses = new Class[localsMapSize+1]; } /** For generating LambdaForm interpreter entry points. */ private InvokerBytecodeGenerator(String className, String invokerName, MethodType invokerType) { this(null, invokerType.parameterCount(), className, invokerName, invokerType); // Create an array to map name indexes to locals indexes. for (int i = 0; i < localsMap.length; i++) { localsMap[i] = invokerType.parameterSlotCount() - invokerType.parameterSlotDepth(i); } } /** For generating customized code for a single LambdaForm. */ private InvokerBytecodeGenerator(String className, LambdaForm form, MethodType invokerType) { this(className, form.lambdaName(), form, invokerType); } /** For generating customized code for a single LambdaForm. */ InvokerBytecodeGenerator(String className, String invokerName, LambdaForm form, MethodType invokerType) { this(form, form.names.length, className, invokerName, invokerType); // Create an array to map name indexes to locals indexes. Name[] names = form.names; for (int i = 0, index = 0; i < localsMap.length; i++) { localsMap[i] = index; if (i < names.length) { BasicType type = names[i].type(); index += type.basicTypeSlots(); } } } /** instance counters for dumped classes */ private static final HashMap DUMP_CLASS_FILES_COUNTERS; /** debugging flag for saving generated class files */ private static final File DUMP_CLASS_FILES_DIR; static { if (DUMP_CLASS_FILES) { DUMP_CLASS_FILES_COUNTERS = new HashMap<>(); try { File dumpDir = new File("DUMP_CLASS_FILES"); if (!dumpDir.exists()) { dumpDir.mkdirs(); } DUMP_CLASS_FILES_DIR = dumpDir; System.out.println("Dumping class files to "+DUMP_CLASS_FILES_DIR+"/..."); } catch (Exception e) { throw newInternalError(e); } } else { DUMP_CLASS_FILES_COUNTERS = null; DUMP_CLASS_FILES_DIR = null; } } private void maybeDump(final byte[] classFile) { if (DUMP_CLASS_FILES) { maybeDump(CLASS_PREFIX + className, classFile); } } // Also used from BoundMethodHandle static void maybeDump(final String className, final byte[] classFile) { if (DUMP_CLASS_FILES) { java.security.AccessController.doPrivileged( new java.security.PrivilegedAction<>() { public Void run() { try { String dumpName = className.replace('.','/'); File dumpFile = new File(DUMP_CLASS_FILES_DIR, dumpName+".class"); System.out.println("dump: " + dumpFile); dumpFile.getParentFile().mkdirs(); FileOutputStream file = new FileOutputStream(dumpFile); file.write(classFile); file.close(); return null; } catch (IOException ex) { throw newInternalError(ex); } } }); } } private static String makeDumpableClassName(String className) { Integer ctr; synchronized (DUMP_CLASS_FILES_COUNTERS) { ctr = DUMP_CLASS_FILES_COUNTERS.get(className); if (ctr == null) ctr = 0; DUMP_CLASS_FILES_COUNTERS.put(className, ctr+1); } String sfx = ctr.toString(); while (sfx.length() < 3) sfx = "0"+sfx; className += sfx; return className; } class CpPatch { final int index; final Object value; CpPatch(int index, Object value) { this.index = index; this.value = value; } public String toString() { return "CpPatch/index="+index+",value="+value; } } private final ArrayList cpPatches = new ArrayList<>(); private int cph = 0; // for counting constant placeholders String constantPlaceholder(Object arg) { String cpPlaceholder = "CONSTANT_PLACEHOLDER_" + cph++; if (DUMP_CLASS_FILES) cpPlaceholder += " <<" + debugString(arg) + ">>"; // TODO check if arg is already in the constant pool // insert placeholder in CP and remember the patch int index = cw.newConst((Object) cpPlaceholder); cpPatches.add(new CpPatch(index, arg)); return cpPlaceholder; } Object[] cpPatches(byte[] classFile) { int size = getConstantPoolSize(classFile); Object[] res = new Object[size]; for (CpPatch p : cpPatches) { if (p.index >= size) throw new InternalError("in cpool["+size+"]: "+p+"\n"+Arrays.toString(Arrays.copyOf(classFile, 20))); res[p.index] = p.value; } return res; } private static String debugString(Object arg) { if (arg instanceof MethodHandle) { MethodHandle mh = (MethodHandle) arg; MemberName member = mh.internalMemberName(); if (member != null) return member.toString(); return mh.debugString(); } return arg.toString(); } /** * Extract the number of constant pool entries from a given class file. * * @param classFile the bytes of the class file in question. * @return the number of entries in the constant pool. */ private static int getConstantPoolSize(byte[] classFile) { // The first few bytes: // u4 magic; // u2 minor_version; // u2 major_version; // u2 constant_pool_count; return ((classFile[8] & 0xFF) << 8) | (classFile[9] & 0xFF); } /** * Extract the MemberName of a newly-defined method. */ private MemberName loadMethod(byte[] classFile) { Class invokerClass = loadAndInitializeInvokerClass(classFile, cpPatches(classFile)); return resolveInvokerMember(invokerClass, invokerName, invokerType); } /** * Define a given class as anonymous class in the runtime system. */ private static Class loadAndInitializeInvokerClass(byte[] classBytes, Object[] patches) { Class invokerClass = UNSAFE.defineAnonymousClass(HOST_CLASS, classBytes, patches); UNSAFE.ensureClassInitialized(invokerClass); // Make sure the class is initialized; VM might complain. return invokerClass; } private static MemberName resolveInvokerMember(Class invokerClass, String name, MethodType type) { MemberName member = new MemberName(invokerClass, name, type, REF_invokeStatic); try { member = MEMBERNAME_FACTORY.resolveOrFail(REF_invokeStatic, member, HOST_CLASS, ReflectiveOperationException.class); } catch (ReflectiveOperationException e) { throw newInternalError(e); } return member; } /** * Set up class file generation. */ private ClassWriter classFilePrologue() { final int NOT_ACC_PUBLIC = 0; // not ACC_PUBLIC cw = new ClassWriter(ClassWriter.COMPUTE_MAXS + ClassWriter.COMPUTE_FRAMES); cw.visit(Opcodes.V1_8, NOT_ACC_PUBLIC + Opcodes.ACC_FINAL + Opcodes.ACC_SUPER, CLASS_PREFIX + className, null, INVOKER_SUPER_NAME, null); cw.visitSource(SOURCE_PREFIX + className, null); return cw; } private void methodPrologue() { String invokerDesc = invokerType.toMethodDescriptorString(); mv = cw.visitMethod(Opcodes.ACC_STATIC, invokerName, invokerDesc, null, null); } /** * Tear down class file generation. */ private void methodEpilogue() { mv.visitMaxs(0, 0); mv.visitEnd(); } /* * Low-level emit helpers. */ private void emitConst(Object con) { if (con == null) { mv.visitInsn(Opcodes.ACONST_NULL); return; } if (con instanceof Integer) { emitIconstInsn((int) con); return; } if (con instanceof Byte) { emitIconstInsn((byte)con); return; } if (con instanceof Short) { emitIconstInsn((short)con); return; } if (con instanceof Character) { emitIconstInsn((char)con); return; } if (con instanceof Long) { long x = (long) con; short sx = (short)x; if (x == sx) { if (sx >= 0 && sx <= 1) { mv.visitInsn(Opcodes.LCONST_0 + (int) sx); } else { emitIconstInsn((int) x); mv.visitInsn(Opcodes.I2L); } return; } } if (con instanceof Float) { float x = (float) con; short sx = (short)x; if (x == sx) { if (sx >= 0 && sx <= 2) { mv.visitInsn(Opcodes.FCONST_0 + (int) sx); } else { emitIconstInsn((int) x); mv.visitInsn(Opcodes.I2F); } return; } } if (con instanceof Double) { double x = (double) con; short sx = (short)x; if (x == sx) { if (sx >= 0 && sx <= 1) { mv.visitInsn(Opcodes.DCONST_0 + (int) sx); } else { emitIconstInsn((int) x); mv.visitInsn(Opcodes.I2D); } return; } } if (con instanceof Boolean) { emitIconstInsn((boolean) con ? 1 : 0); return; } // fall through: mv.visitLdcInsn(con); } private void emitIconstInsn(final int cst) { if (cst >= -1 && cst <= 5) { mv.visitInsn(Opcodes.ICONST_0 + cst); } else if (cst >= Byte.MIN_VALUE && cst <= Byte.MAX_VALUE) { mv.visitIntInsn(Opcodes.BIPUSH, cst); } else if (cst >= Short.MIN_VALUE && cst <= Short.MAX_VALUE) { mv.visitIntInsn(Opcodes.SIPUSH, cst); } else { mv.visitLdcInsn(cst); } } /* * NOTE: These load/store methods use the localsMap to find the correct index! */ private void emitLoadInsn(BasicType type, int index) { int opcode = loadInsnOpcode(type); mv.visitVarInsn(opcode, localsMap[index]); } private int loadInsnOpcode(BasicType type) throws InternalError { switch (type) { case I_TYPE: return Opcodes.ILOAD; case J_TYPE: return Opcodes.LLOAD; case F_TYPE: return Opcodes.FLOAD; case D_TYPE: return Opcodes.DLOAD; case L_TYPE: return Opcodes.ALOAD; default: throw new InternalError("unknown type: " + type); } } private void emitAloadInsn(int index) { emitLoadInsn(L_TYPE, index); } private void emitStoreInsn(BasicType type, int index) { int opcode = storeInsnOpcode(type); mv.visitVarInsn(opcode, localsMap[index]); } private int storeInsnOpcode(BasicType type) throws InternalError { switch (type) { case I_TYPE: return Opcodes.ISTORE; case J_TYPE: return Opcodes.LSTORE; case F_TYPE: return Opcodes.FSTORE; case D_TYPE: return Opcodes.DSTORE; case L_TYPE: return Opcodes.ASTORE; default: throw new InternalError("unknown type: " + type); } } private void emitAstoreInsn(int index) { emitStoreInsn(L_TYPE, index); } private byte arrayTypeCode(Wrapper elementType) { switch (elementType) { case BOOLEAN: return Opcodes.T_BOOLEAN; case BYTE: return Opcodes.T_BYTE; case CHAR: return Opcodes.T_CHAR; case SHORT: return Opcodes.T_SHORT; case INT: return Opcodes.T_INT; case LONG: return Opcodes.T_LONG; case FLOAT: return Opcodes.T_FLOAT; case DOUBLE: return Opcodes.T_DOUBLE; case OBJECT: return 0; // in place of Opcodes.T_OBJECT default: throw new InternalError(); } } private int arrayInsnOpcode(byte tcode, int aaop) throws InternalError { assert(aaop == Opcodes.AASTORE || aaop == Opcodes.AALOAD); int xas; switch (tcode) { case Opcodes.T_BOOLEAN: xas = Opcodes.BASTORE; break; case Opcodes.T_BYTE: xas = Opcodes.BASTORE; break; case Opcodes.T_CHAR: xas = Opcodes.CASTORE; break; case Opcodes.T_SHORT: xas = Opcodes.SASTORE; break; case Opcodes.T_INT: xas = Opcodes.IASTORE; break; case Opcodes.T_LONG: xas = Opcodes.LASTORE; break; case Opcodes.T_FLOAT: xas = Opcodes.FASTORE; break; case Opcodes.T_DOUBLE: xas = Opcodes.DASTORE; break; case 0: xas = Opcodes.AASTORE; break; default: throw new InternalError(); } return xas - Opcodes.AASTORE + aaop; } /** * Emit a boxing call. * * @param wrapper primitive type class to box. */ private void emitBoxing(Wrapper wrapper) { String owner = "java/lang/" + wrapper.wrapperType().getSimpleName(); String name = "valueOf"; String desc = "(" + wrapper.basicTypeChar() + ")L" + owner + ";"; mv.visitMethodInsn(Opcodes.INVOKESTATIC, owner, name, desc, false); } /** * Emit an unboxing call (plus preceding checkcast). * * @param wrapper wrapper type class to unbox. */ private void emitUnboxing(Wrapper wrapper) { String owner = "java/lang/" + wrapper.wrapperType().getSimpleName(); String name = wrapper.primitiveSimpleName() + "Value"; String desc = "()" + wrapper.basicTypeChar(); emitReferenceCast(wrapper.wrapperType(), null); mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, owner, name, desc, false); } /** * Emit an implicit conversion for an argument which must be of the given pclass. * This is usually a no-op, except when pclass is a subword type or a reference other than Object or an interface. * * @param ptype type of value present on stack * @param pclass type of value required on stack * @param arg compile-time representation of value on stack (Node, constant) or null if none */ private void emitImplicitConversion(BasicType ptype, Class pclass, Object arg) { assert(basicType(pclass) == ptype); // boxing/unboxing handled by caller if (pclass == ptype.basicTypeClass() && ptype != L_TYPE) return; // nothing to do switch (ptype) { case L_TYPE: if (VerifyType.isNullConversion(Object.class, pclass, false)) { if (PROFILE_LEVEL > 0) emitReferenceCast(Object.class, arg); return; } emitReferenceCast(pclass, arg); return; case I_TYPE: if (!VerifyType.isNullConversion(int.class, pclass, false)) emitPrimCast(ptype.basicTypeWrapper(), Wrapper.forPrimitiveType(pclass)); return; } throw newInternalError("bad implicit conversion: tc="+ptype+": "+pclass); } /** Update localClasses type map. Return true if the information is already present. */ private boolean assertStaticType(Class cls, Name n) { int local = n.index(); Class aclass = localClasses[local]; if (aclass != null && (aclass == cls || cls.isAssignableFrom(aclass))) { return true; // type info is already present } else if (aclass == null || aclass.isAssignableFrom(cls)) { localClasses[local] = cls; // type info can be improved } return false; } private void emitReferenceCast(Class cls, Object arg) { Name writeBack = null; // local to write back result if (arg instanceof Name) { Name n = (Name) arg; if (lambdaForm.useCount(n) > 1) { // This guy gets used more than once. writeBack = n; if (assertStaticType(cls, n)) { return; // this cast was already performed } } } if (isStaticallyNameable(cls)) { String sig = getInternalName(cls); mv.visitTypeInsn(Opcodes.CHECKCAST, sig); } else { mv.visitLdcInsn(constantPlaceholder(cls)); mv.visitTypeInsn(Opcodes.CHECKCAST, CLS); mv.visitInsn(Opcodes.SWAP); mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, CLS, "cast", LL_SIG, false); if (Object[].class.isAssignableFrom(cls)) mv.visitTypeInsn(Opcodes.CHECKCAST, OBJARY); else if (PROFILE_LEVEL > 0) mv.visitTypeInsn(Opcodes.CHECKCAST, OBJ); } if (writeBack != null) { mv.visitInsn(Opcodes.DUP); emitAstoreInsn(writeBack.index()); } } /** * Emits an actual return instruction conforming to the given return type. */ private void emitReturnInsn(BasicType type) { int opcode; switch (type) { case I_TYPE: opcode = Opcodes.IRETURN; break; case J_TYPE: opcode = Opcodes.LRETURN; break; case F_TYPE: opcode = Opcodes.FRETURN; break; case D_TYPE: opcode = Opcodes.DRETURN; break; case L_TYPE: opcode = Opcodes.ARETURN; break; case V_TYPE: opcode = Opcodes.RETURN; break; default: throw new InternalError("unknown return type: " + type); } mv.visitInsn(opcode); } private String getInternalName(Class c) { if (c == Object.class) return OBJ; else if (c == Object[].class) return OBJARY; else if (c == Class.class) return CLS; else if (c == MethodHandle.class) return MH; assert(VerifyAccess.isTypeVisible(c, Object.class)) : c.getName(); if (c == lastClass) { return lastInternalName; } lastClass = c; return lastInternalName = c.getName().replace('.', '/'); } private static MemberName resolveFrom(String name, MethodType type, Class holder) { MemberName member = new MemberName(holder, name, type, REF_invokeStatic); MemberName resolvedMember = MemberName.getFactory().resolveOrNull(REF_invokeStatic, member, holder); if (TRACE_RESOLVE) { System.out.println("[LF_RESOLVE] " + holder.getName() + " " + name + " " + shortenSignature(basicTypeSignature(type)) + (resolvedMember != null ? " (success)" : " (fail)") ); } return resolvedMember; } private static MemberName lookupPregenerated(LambdaForm form, MethodType invokerType) { if (form.customized != null) { // No pre-generated version for customized LF return null; } String name = form.kind.methodName; switch (form.kind) { case BOUND_REINVOKER: { name = name + "_" + BoundMethodHandle.speciesDataFor(form).key(); return resolveFrom(name, invokerType, DelegatingMethodHandle.Holder.class); } case DELEGATE: return resolveFrom(name, invokerType, DelegatingMethodHandle.Holder.class); case ZERO: // fall-through case IDENTITY: { name = name + "_" + form.returnType().basicTypeChar(); return resolveFrom(name, invokerType, LambdaForm.Holder.class); } case EXACT_INVOKER: // fall-through case EXACT_LINKER: // fall-through case LINK_TO_CALL_SITE: // fall-through case LINK_TO_TARGET_METHOD: // fall-through case GENERIC_INVOKER: // fall-through case GENERIC_LINKER: return resolveFrom(name, invokerType.basicType(), Invokers.Holder.class); case GET_REFERENCE: // fall-through case GET_BOOLEAN: // fall-through case GET_BYTE: // fall-through case GET_CHAR: // fall-through case GET_SHORT: // fall-through case GET_INT: // fall-through case GET_LONG: // fall-through case GET_FLOAT: // fall-through case GET_DOUBLE: // fall-through case PUT_REFERENCE: // fall-through case PUT_BOOLEAN: // fall-through case PUT_BYTE: // fall-through case PUT_CHAR: // fall-through case PUT_SHORT: // fall-through case PUT_INT: // fall-through case PUT_LONG: // fall-through case PUT_FLOAT: // fall-through case PUT_DOUBLE: // fall-through case DIRECT_NEW_INVOKE_SPECIAL: // fall-through case DIRECT_INVOKE_INTERFACE: // fall-through case DIRECT_INVOKE_SPECIAL: // fall-through case DIRECT_INVOKE_SPECIAL_IFC: // fall-through case DIRECT_INVOKE_STATIC: // fall-through case DIRECT_INVOKE_STATIC_INIT: // fall-through case DIRECT_INVOKE_VIRTUAL: return resolveFrom(name, invokerType, DirectMethodHandle.Holder.class); } return null; } /** * Generate customized bytecode for a given LambdaForm. */ static MemberName generateCustomizedCode(LambdaForm form, MethodType invokerType) { MemberName pregenerated = lookupPregenerated(form, invokerType); if (pregenerated != null) return pregenerated; // pre-generated bytecode InvokerBytecodeGenerator g = new InvokerBytecodeGenerator("MH", form, invokerType); return g.loadMethod(g.generateCustomizedCodeBytes()); } /** Generates code to check that actual receiver and LambdaForm matches */ private boolean checkActualReceiver() { // Expects MethodHandle on the stack and actual receiver MethodHandle in slot #0 mv.visitInsn(Opcodes.DUP); mv.visitVarInsn(Opcodes.ALOAD, localsMap[0]); mv.visitMethodInsn(Opcodes.INVOKESTATIC, MHI, "assertSame", LLV_SIG, false); return true; } static String className(String cn) { assert checkClassName(cn): "Class not found: " + cn; return cn; } static boolean checkClassName(String cn) { Type tp = Type.getType(cn); // additional sanity so only valid "L;" descriptors work if (tp.getSort() != Type.OBJECT) { return false; } try { Class c = Class.forName(tp.getClassName(), false, null); return true; } catch (ClassNotFoundException e) { return false; } } static final String LF_HIDDEN_SIG = className("Ljava/lang/invoke/LambdaForm$Hidden;"); static final String LF_COMPILED_SIG = className("Ljava/lang/invoke/LambdaForm$Compiled;"); static final String FORCEINLINE_SIG = className("Ljdk/internal/vm/annotation/ForceInline;"); static final String DONTINLINE_SIG = className("Ljdk/internal/vm/annotation/DontInline;"); static final String INJECTEDPROFILE_SIG = className("Ljava/lang/invoke/InjectedProfile;"); /** * Generate an invoker method for the passed {@link LambdaForm}. */ private byte[] generateCustomizedCodeBytes() { classFilePrologue(); addMethod(); bogusMethod(lambdaForm); final byte[] classFile = toByteArray(); maybeDump(classFile); return classFile; } void setClassWriter(ClassWriter cw) { this.cw = cw; } void addMethod() { methodPrologue(); // Suppress this method in backtraces displayed to the user. mv.visitAnnotation(LF_HIDDEN_SIG, true); // Mark this method as a compiled LambdaForm mv.visitAnnotation(LF_COMPILED_SIG, true); if (lambdaForm.forceInline) { // Force inlining of this invoker method. mv.visitAnnotation(FORCEINLINE_SIG, true); } else { mv.visitAnnotation(DONTINLINE_SIG, true); } constantPlaceholder(lambdaForm); // keep LambdaForm instance & its compiled form lifetime tightly coupled. if (lambdaForm.customized != null) { // Since LambdaForm is customized for a particular MethodHandle, it's safe to substitute // receiver MethodHandle (at slot #0) with an embedded constant and use it instead. // It enables more efficient code generation in some situations, since embedded constants // are compile-time constants for JIT compiler. mv.visitLdcInsn(constantPlaceholder(lambdaForm.customized)); mv.visitTypeInsn(Opcodes.CHECKCAST, MH); assert(checkActualReceiver()); // expects MethodHandle on top of the stack mv.visitVarInsn(Opcodes.ASTORE, localsMap[0]); } // iterate over the form's names, generating bytecode instructions for each // start iterating at the first name following the arguments Name onStack = null; for (int i = lambdaForm.arity; i < lambdaForm.names.length; i++) { Name name = lambdaForm.names[i]; emitStoreResult(onStack); onStack = name; // unless otherwise modified below MethodHandleImpl.Intrinsic intr = name.function.intrinsicName(); switch (intr) { case SELECT_ALTERNATIVE: assert lambdaForm.isSelectAlternative(i); if (PROFILE_GWT) { assert(name.arguments[0] instanceof Name && ((Name)name.arguments[0]).refersTo(MethodHandleImpl.class, "profileBoolean")); mv.visitAnnotation(INJECTEDPROFILE_SIG, true); } onStack = emitSelectAlternative(name, lambdaForm.names[i+1]); i++; // skip MH.invokeBasic of the selectAlternative result continue; case GUARD_WITH_CATCH: assert lambdaForm.isGuardWithCatch(i); onStack = emitGuardWithCatch(i); i += 2; // jump to the end of GWC idiom continue; case TRY_FINALLY: assert lambdaForm.isTryFinally(i); onStack = emitTryFinally(i); i += 2; // jump to the end of the TF idiom continue; case LOOP: assert lambdaForm.isLoop(i); onStack = emitLoop(i); i += 2; // jump to the end of the LOOP idiom continue; case NEW_ARRAY: Class rtype = name.function.methodType().returnType(); if (isStaticallyNameable(rtype)) { emitNewArray(name); continue; } break; case ARRAY_LOAD: emitArrayLoad(name); continue; case ARRAY_STORE: emitArrayStore(name); continue; case ARRAY_LENGTH: emitArrayLength(name); continue; case IDENTITY: assert(name.arguments.length == 1); emitPushArguments(name, 0); continue; case ZERO: assert(name.arguments.length == 0); emitConst(name.type.basicTypeWrapper().zero()); continue; case NONE: // no intrinsic associated break; default: throw newInternalError("Unknown intrinsic: "+intr); } MemberName member = name.function.member(); if (isStaticallyInvocable(member)) { emitStaticInvoke(member, name); } else { emitInvoke(name); } } // return statement emitReturn(onStack); methodEpilogue(); } /* * @throws BytecodeGenerationException if something goes wrong when * generating the byte code */ private byte[] toByteArray() { try { return cw.toByteArray(); } catch (RuntimeException e) { throw new BytecodeGenerationException(e); } } @SuppressWarnings("serial") static final class BytecodeGenerationException extends RuntimeException { BytecodeGenerationException(Exception cause) { super(cause); } } void emitArrayLoad(Name name) { emitArrayOp(name, Opcodes.AALOAD); } void emitArrayStore(Name name) { emitArrayOp(name, Opcodes.AASTORE); } void emitArrayLength(Name name) { emitArrayOp(name, Opcodes.ARRAYLENGTH); } void emitArrayOp(Name name, int arrayOpcode) { assert arrayOpcode == Opcodes.AALOAD || arrayOpcode == Opcodes.AASTORE || arrayOpcode == Opcodes.ARRAYLENGTH; Class elementType = name.function.methodType().parameterType(0).getComponentType(); assert elementType != null; emitPushArguments(name, 0); if (arrayOpcode != Opcodes.ARRAYLENGTH && elementType.isPrimitive()) { Wrapper w = Wrapper.forPrimitiveType(elementType); arrayOpcode = arrayInsnOpcode(arrayTypeCode(w), arrayOpcode); } mv.visitInsn(arrayOpcode); } /** * Emit an invoke for the given name. */ void emitInvoke(Name name) { assert(!name.isLinkerMethodInvoke()); // should use the static path for these if (true) { // push receiver MethodHandle target = name.function.resolvedHandle(); assert(target != null) : name.exprString(); mv.visitLdcInsn(constantPlaceholder(target)); emitReferenceCast(MethodHandle.class, target); } else { // load receiver emitAloadInsn(0); emitReferenceCast(MethodHandle.class, null); mv.visitFieldInsn(Opcodes.GETFIELD, MH, "form", LF_SIG); mv.visitFieldInsn(Opcodes.GETFIELD, LF, "names", LFN_SIG); // TODO more to come } // push arguments emitPushArguments(name, 0); // invocation MethodType type = name.function.methodType(); mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, MH, "invokeBasic", type.basicType().toMethodDescriptorString(), false); } private static Class[] STATICALLY_INVOCABLE_PACKAGES = { // Sample classes from each package we are willing to bind to statically: java.lang.Object.class, java.util.Arrays.class, jdk.internal.misc.Unsafe.class //MethodHandle.class already covered }; static boolean isStaticallyInvocable(NamedFunction ... functions) { for (NamedFunction nf : functions) { if (!isStaticallyInvocable(nf.member())) { return false; } } return true; } static boolean isStaticallyInvocable(Name name) { return isStaticallyInvocable(name.function.member()); } static boolean isStaticallyInvocable(MemberName member) { if (member == null) return false; if (member.isConstructor()) return false; Class cls = member.getDeclaringClass(); // Fast-path non-private members declared by MethodHandles, which is a common // case if (MethodHandle.class.isAssignableFrom(cls) && !member.isPrivate()) { assert(isStaticallyInvocableType(member.getMethodOrFieldType())); return true; } if (cls.isArray() || cls.isPrimitive()) return false; // FIXME if (cls.isAnonymousClass() || cls.isLocalClass()) return false; // inner class of some sort if (cls.getClassLoader() != MethodHandle.class.getClassLoader()) return false; // not on BCP if (ReflectUtil.isVMAnonymousClass(cls)) // FIXME: switch to supported API once it is added return false; if (!isStaticallyInvocableType(member.getMethodOrFieldType())) return false; if (!member.isPrivate() && VerifyAccess.isSamePackage(MethodHandle.class, cls)) return true; // in java.lang.invoke package if (member.isPublic() && isStaticallyNameable(cls)) return true; return false; } private static boolean isStaticallyInvocableType(MethodType mtype) { if (!isStaticallyNameable(mtype.returnType())) return false; for (Class ptype : mtype.parameterArray()) if (!isStaticallyNameable(ptype)) return false; return true; } static boolean isStaticallyNameable(Class cls) { if (cls == Object.class) return true; if (MethodHandle.class.isAssignableFrom(cls)) { assert(!ReflectUtil.isVMAnonymousClass(cls)); return true; } while (cls.isArray()) cls = cls.getComponentType(); if (cls.isPrimitive()) return true; // int[].class, for example if (ReflectUtil.isVMAnonymousClass(cls)) // FIXME: switch to supported API once it is added return false; // could use VerifyAccess.isClassAccessible but the following is a safe approximation if (cls.getClassLoader() != Object.class.getClassLoader()) return false; if (VerifyAccess.isSamePackage(MethodHandle.class, cls)) return true; if (!Modifier.isPublic(cls.getModifiers())) return false; for (Class pkgcls : STATICALLY_INVOCABLE_PACKAGES) { if (VerifyAccess.isSamePackage(pkgcls, cls)) return true; } return false; } void emitStaticInvoke(Name name) { emitStaticInvoke(name.function.member(), name); } /** * Emit an invoke for the given name, using the MemberName directly. */ void emitStaticInvoke(MemberName member, Name name) { assert(member.equals(name.function.member())); Class defc = member.getDeclaringClass(); String cname = getInternalName(defc); String mname = member.getName(); String mtype; byte refKind = member.getReferenceKind(); if (refKind == REF_invokeSpecial) { // in order to pass the verifier, we need to convert this to invokevirtual in all cases assert(member.canBeStaticallyBound()) : member; refKind = REF_invokeVirtual; } assert(!(member.getDeclaringClass().isInterface() && refKind == REF_invokeVirtual)); // push arguments emitPushArguments(name, 0); // invocation if (member.isMethod()) { mtype = member.getMethodType().toMethodDescriptorString(); mv.visitMethodInsn(refKindOpcode(refKind), cname, mname, mtype, member.getDeclaringClass().isInterface()); } else { mtype = MethodType.toFieldDescriptorString(member.getFieldType()); mv.visitFieldInsn(refKindOpcode(refKind), cname, mname, mtype); } // Issue a type assertion for the result, so we can avoid casts later. if (name.type == L_TYPE) { Class rtype = member.getInvocationType().returnType(); assert(!rtype.isPrimitive()); if (rtype != Object.class && !rtype.isInterface()) { assertStaticType(rtype, name); } } } void emitNewArray(Name name) throws InternalError { Class rtype = name.function.methodType().returnType(); if (name.arguments.length == 0) { // The array will be a constant. Object emptyArray; try { emptyArray = name.function.resolvedHandle().invoke(); } catch (Throwable ex) { throw uncaughtException(ex); } assert(java.lang.reflect.Array.getLength(emptyArray) == 0); assert(emptyArray.getClass() == rtype); // exact typing mv.visitLdcInsn(constantPlaceholder(emptyArray)); emitReferenceCast(rtype, emptyArray); return; } Class arrayElementType = rtype.getComponentType(); assert(arrayElementType != null); emitIconstInsn(name.arguments.length); int xas = Opcodes.AASTORE; if (!arrayElementType.isPrimitive()) { mv.visitTypeInsn(Opcodes.ANEWARRAY, getInternalName(arrayElementType)); } else { byte tc = arrayTypeCode(Wrapper.forPrimitiveType(arrayElementType)); xas = arrayInsnOpcode(tc, xas); mv.visitIntInsn(Opcodes.NEWARRAY, tc); } // store arguments for (int i = 0; i < name.arguments.length; i++) { mv.visitInsn(Opcodes.DUP); emitIconstInsn(i); emitPushArgument(name, i); mv.visitInsn(xas); } // the array is left on the stack assertStaticType(rtype, name); } int refKindOpcode(byte refKind) { switch (refKind) { case REF_invokeVirtual: return Opcodes.INVOKEVIRTUAL; case REF_invokeStatic: return Opcodes.INVOKESTATIC; case REF_invokeSpecial: return Opcodes.INVOKESPECIAL; case REF_invokeInterface: return Opcodes.INVOKEINTERFACE; case REF_getField: return Opcodes.GETFIELD; case REF_putField: return Opcodes.PUTFIELD; case REF_getStatic: return Opcodes.GETSTATIC; case REF_putStatic: return Opcodes.PUTSTATIC; } throw new InternalError("refKind="+refKind); } /** * Emit bytecode for the selectAlternative idiom. * * The pattern looks like (Cf. MethodHandleImpl.makeGuardWithTest): *

{@code
     *   Lambda(a0:L,a1:I)=>{
     *     t2:I=foo.test(a1:I);
     *     t3:L=MethodHandleImpl.selectAlternative(t2:I,(MethodHandle(int)int),(MethodHandle(int)int));
     *     t4:I=MethodHandle.invokeBasic(t3:L,a1:I);t4:I}
     * }
*/ private Name emitSelectAlternative(Name selectAlternativeName, Name invokeBasicName) { assert isStaticallyInvocable(invokeBasicName); Name receiver = (Name) invokeBasicName.arguments[0]; Label L_fallback = new Label(); Label L_done = new Label(); // load test result emitPushArgument(selectAlternativeName, 0); // if_icmpne L_fallback mv.visitJumpInsn(Opcodes.IFEQ, L_fallback); // invoke selectAlternativeName.arguments[1] Class[] preForkClasses = localClasses.clone(); emitPushArgument(selectAlternativeName, 1); // get 2nd argument of selectAlternative emitAstoreInsn(receiver.index()); // store the MH in the receiver slot emitStaticInvoke(invokeBasicName); // goto L_done mv.visitJumpInsn(Opcodes.GOTO, L_done); // L_fallback: mv.visitLabel(L_fallback); // invoke selectAlternativeName.arguments[2] System.arraycopy(preForkClasses, 0, localClasses, 0, preForkClasses.length); emitPushArgument(selectAlternativeName, 2); // get 3rd argument of selectAlternative emitAstoreInsn(receiver.index()); // store the MH in the receiver slot emitStaticInvoke(invokeBasicName); // L_done: mv.visitLabel(L_done); // for now do not bother to merge typestate; just reset to the dominator state System.arraycopy(preForkClasses, 0, localClasses, 0, preForkClasses.length); return invokeBasicName; // return what's on stack } /** * Emit bytecode for the guardWithCatch idiom. * * The pattern looks like (Cf. MethodHandleImpl.makeGuardWithCatch): *
{@code
      *  guardWithCatch=Lambda(a0:L,a1:L,a2:L,a3:L,a4:L,a5:L,a6:L,a7:L)=>{
      *    t8:L=MethodHandle.invokeBasic(a4:L,a6:L,a7:L);
      *    t9:L=MethodHandleImpl.guardWithCatch(a1:L,a2:L,a3:L,t8:L);
      *   t10:I=MethodHandle.invokeBasic(a5:L,t9:L);t10:I}
      * }
* * It is compiled into bytecode equivalent of the following code: *
{@code
      *  try {
      *      return a1.invokeBasic(a6, a7);
      *  } catch (Throwable e) {
      *      if (!a2.isInstance(e)) throw e;
      *      return a3.invokeBasic(ex, a6, a7);
      *  }}
      */
    private Name emitGuardWithCatch(int pos) {
        Name args    = lambdaForm.names[pos];
        Name invoker = lambdaForm.names[pos+1];
        Name result  = lambdaForm.names[pos+2];

        Label L_startBlock = new Label();
        Label L_endBlock = new Label();
        Label L_handler = new Label();
        Label L_done = new Label();

        Class returnType = result.function.resolvedHandle().type().returnType();
        MethodType type = args.function.resolvedHandle().type()
                              .dropParameterTypes(0,1)
                              .changeReturnType(returnType);

        mv.visitTryCatchBlock(L_startBlock, L_endBlock, L_handler, "java/lang/Throwable");

        // Normal case
        mv.visitLabel(L_startBlock);
        // load target
        emitPushArgument(invoker, 0);
        emitPushArguments(args, 1); // skip 1st argument: method handle
        mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, MH, "invokeBasic", type.basicType().toMethodDescriptorString(), false);
        mv.visitLabel(L_endBlock);
        mv.visitJumpInsn(Opcodes.GOTO, L_done);

        // Exceptional case
        mv.visitLabel(L_handler);

        // Check exception's type
        mv.visitInsn(Opcodes.DUP);
        // load exception class
        emitPushArgument(invoker, 1);
        mv.visitInsn(Opcodes.SWAP);
        mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, "java/lang/Class", "isInstance", "(Ljava/lang/Object;)Z", false);
        Label L_rethrow = new Label();
        mv.visitJumpInsn(Opcodes.IFEQ, L_rethrow);

        // Invoke catcher
        // load catcher
        emitPushArgument(invoker, 2);
        mv.visitInsn(Opcodes.SWAP);
        emitPushArguments(args, 1); // skip 1st argument: method handle
        MethodType catcherType = type.insertParameterTypes(0, Throwable.class);
        mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, MH, "invokeBasic", catcherType.basicType().toMethodDescriptorString(), false);
        mv.visitJumpInsn(Opcodes.GOTO, L_done);

        mv.visitLabel(L_rethrow);
        mv.visitInsn(Opcodes.ATHROW);

        mv.visitLabel(L_done);

        return result;
    }

    /**
     * Emit bytecode for the tryFinally idiom.
     * 

* The pattern looks like (Cf. MethodHandleImpl.makeTryFinally): *

{@code
     * // a0: BMH
     * // a1: target, a2: cleanup
     * // a3: box, a4: unbox
     * // a5 (and following): arguments
     * tryFinally=Lambda(a0:L,a1:L,a2:L,a3:L,a4:L,a5:L)=>{
     *   t6:L=MethodHandle.invokeBasic(a3:L,a5:L);         // box the arguments into an Object[]
     *   t7:L=MethodHandleImpl.tryFinally(a1:L,a2:L,t6:L); // call the tryFinally executor
     *   t8:L=MethodHandle.invokeBasic(a4:L,t7:L);t8:L}    // unbox the result; return the result
     * }
*

* It is compiled into bytecode equivalent to the following code: *

{@code
     * Throwable t;
     * Object r;
     * try {
     *     r = a1.invokeBasic(a5);
     * } catch (Throwable thrown) {
     *     t = thrown;
     *     throw t;
     * } finally {
     *     r = a2.invokeBasic(t, r, a5);
     * }
     * return r;
     * }
*

* Specifically, the bytecode will have the following form (the stack effects are given for the beginnings of * blocks, and for the situations after executing the given instruction - the code will have a slightly different * shape if the return type is {@code void}): *

{@code
     * TRY:                 (--)
     *                      load target                             (-- target)
     *                      load args                               (-- args... target)
     *                      INVOKEVIRTUAL MethodHandle.invokeBasic  (depends)
     * FINALLY_NORMAL:      (-- r)
     *                      load cleanup                            (-- cleanup r)
     *                      SWAP                                    (-- r cleanup)
     *                      ACONST_NULL                             (-- t r cleanup)
     *                      SWAP                                    (-- r t cleanup)
     *                      load args                               (-- args... r t cleanup)
     *                      INVOKEVIRTUAL MethodHandle.invokeBasic  (-- r)
     *                      GOTO DONE
     * CATCH:               (-- t)
     *                      DUP                                     (-- t t)
     * FINALLY_EXCEPTIONAL: (-- t t)
     *                      load cleanup                            (-- cleanup t t)
     *                      SWAP                                    (-- t cleanup t)
     *                      load default for r                      (-- r t cleanup t)
     *                      load args                               (-- args... r t cleanup t)
     *                      INVOKEVIRTUAL MethodHandle.invokeBasic  (-- r t)
     *                      POP                                     (-- t)
     *                      ATHROW
     * DONE:                (-- r)
     * }
*/ private Name emitTryFinally(int pos) { Name args = lambdaForm.names[pos]; Name invoker = lambdaForm.names[pos+1]; Name result = lambdaForm.names[pos+2]; Label lFrom = new Label(); Label lTo = new Label(); Label lCatch = new Label(); Label lDone = new Label(); Class returnType = result.function.resolvedHandle().type().returnType(); boolean isNonVoid = returnType != void.class; MethodType type = args.function.resolvedHandle().type() .dropParameterTypes(0,1) .changeReturnType(returnType); MethodType cleanupType = type.insertParameterTypes(0, Throwable.class); if (isNonVoid) { cleanupType = cleanupType.insertParameterTypes(1, returnType); } String cleanupDesc = cleanupType.basicType().toMethodDescriptorString(); // exception handler table mv.visitTryCatchBlock(lFrom, lTo, lCatch, "java/lang/Throwable"); // TRY: mv.visitLabel(lFrom); emitPushArgument(invoker, 0); // load target emitPushArguments(args, 1); // load args (skip 0: method handle) mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, MH, "invokeBasic", type.basicType().toMethodDescriptorString(), false); mv.visitLabel(lTo); // FINALLY_NORMAL: emitPushArgument(invoker, 1); // load cleanup if (isNonVoid) { mv.visitInsn(Opcodes.SWAP); } mv.visitInsn(Opcodes.ACONST_NULL); if (isNonVoid) { mv.visitInsn(Opcodes.SWAP); } emitPushArguments(args, 1); // load args (skip 0: method handle) mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, MH, "invokeBasic", cleanupDesc, false); mv.visitJumpInsn(Opcodes.GOTO, lDone); // CATCH: mv.visitLabel(lCatch); mv.visitInsn(Opcodes.DUP); // FINALLY_EXCEPTIONAL: emitPushArgument(invoker, 1); // load cleanup mv.visitInsn(Opcodes.SWAP); if (isNonVoid) { emitZero(BasicType.basicType(returnType)); // load default for result } emitPushArguments(args, 1); // load args (skip 0: method handle) mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, MH, "invokeBasic", cleanupDesc, false); if (isNonVoid) { mv.visitInsn(Opcodes.POP); } mv.visitInsn(Opcodes.ATHROW); // DONE: mv.visitLabel(lDone); return result; } /** * Emit bytecode for the loop idiom. *

* The pattern looks like (Cf. MethodHandleImpl.loop): *

{@code
     * // a0: BMH
     * // a1: LoopClauses (containing an array of arrays: inits, steps, preds, finis)
     * // a2: box, a3: unbox
     * // a4 (and following): arguments
     * loop=Lambda(a0:L,a1:L,a2:L,a3:L,a4:L)=>{
     *   t5:L=MethodHandle.invokeBasic(a2:L,a4:L);          // box the arguments into an Object[]
     *   t6:L=MethodHandleImpl.loop(bt:L,a1:L,t5:L);        // call the loop executor (with supplied types in bt)
     *   t7:L=MethodHandle.invokeBasic(a3:L,t6:L);t7:L}     // unbox the result; return the result
     * }
*

* It is compiled into bytecode equivalent to the code seen in {@link MethodHandleImpl#loop(BasicType[], * MethodHandleImpl.LoopClauses, Object...)}, with the difference that no arrays * will be used for local state storage. Instead, the local state will be mapped to actual stack slots. *

* Bytecode generation applies an unrolling scheme to enable better bytecode generation regarding local state type * handling. The generated bytecode will have the following form ({@code void} types are ignored for convenience). * Assume there are {@code C} clauses in the loop. *

{@code
     * PREINIT: ALOAD_1
     *          CHECKCAST LoopClauses
     *          GETFIELD LoopClauses.clauses
     *          ASTORE clauseDataIndex          // place the clauses 2-dimensional array on the stack
     * INIT:    (INIT_SEQ for clause 1)
     *          ...
     *          (INIT_SEQ for clause C)
     * LOOP:    (LOOP_SEQ for clause 1)
     *          ...
     *          (LOOP_SEQ for clause C)
     *          GOTO LOOP
     * DONE:    ...
     * }
*

* The {@code INIT_SEQ_x} sequence for clause {@code x} (with {@code x} ranging from {@code 0} to {@code C-1}) has * the following shape. Assume slot {@code vx} is used to hold the state for clause {@code x}. *

{@code
     * INIT_SEQ_x:  ALOAD clauseDataIndex
     *              ICONST_0
     *              AALOAD      // load the inits array
     *              ICONST x
     *              AALOAD      // load the init handle for clause x
     *              load args
     *              INVOKEVIRTUAL MethodHandle.invokeBasic
     *              store vx
     * }
*

* The {@code LOOP_SEQ_x} sequence for clause {@code x} (with {@code x} ranging from {@code 0} to {@code C-1}) has * the following shape. Again, assume slot {@code vx} is used to hold the state for clause {@code x}. *

{@code
     * LOOP_SEQ_x:  ALOAD clauseDataIndex
     *              ICONST_1
     *              AALOAD              // load the steps array
     *              ICONST x
     *              AALOAD              // load the step handle for clause x
     *              load locals
     *              load args
     *              INVOKEVIRTUAL MethodHandle.invokeBasic
     *              store vx
     *              ALOAD clauseDataIndex
     *              ICONST_2
     *              AALOAD              // load the preds array
     *              ICONST x
     *              AALOAD              // load the pred handle for clause x
     *              load locals
     *              load args
     *              INVOKEVIRTUAL MethodHandle.invokeBasic
     *              IFNE LOOP_SEQ_x+1   // predicate returned false -> jump to next clause
     *              ALOAD clauseDataIndex
     *              ICONST_3
     *              AALOAD              // load the finis array
     *              ICONST x
     *              AALOAD              // load the fini handle for clause x
     *              load locals
     *              load args
     *              INVOKEVIRTUAL MethodHandle.invokeBasic
     *              GOTO DONE           // jump beyond end of clauses to return from loop
     * }
*/ private Name emitLoop(int pos) { Name args = lambdaForm.names[pos]; Name invoker = lambdaForm.names[pos+1]; Name result = lambdaForm.names[pos+2]; // extract clause and loop-local state types // find the type info in the loop invocation BasicType[] loopClauseTypes = (BasicType[]) invoker.arguments[0]; Class[] loopLocalStateTypes = Stream.of(loopClauseTypes). filter(bt -> bt != BasicType.V_TYPE).map(BasicType::basicTypeClass).toArray(Class[]::new); Class[] localTypes = new Class[loopLocalStateTypes.length + 1]; localTypes[0] = MethodHandleImpl.LoopClauses.class; System.arraycopy(loopLocalStateTypes, 0, localTypes, 1, loopLocalStateTypes.length); final int clauseDataIndex = extendLocalsMap(localTypes); final int firstLoopStateIndex = clauseDataIndex + 1; Class returnType = result.function.resolvedHandle().type().returnType(); MethodType loopType = args.function.resolvedHandle().type() .dropParameterTypes(0,1) .changeReturnType(returnType); MethodType loopHandleType = loopType.insertParameterTypes(0, loopLocalStateTypes); MethodType predType = loopHandleType.changeReturnType(boolean.class); MethodType finiType = loopHandleType; final int nClauses = loopClauseTypes.length; // indices to invoker arguments to load method handle arrays final int inits = 1; final int steps = 2; final int preds = 3; final int finis = 4; Label lLoop = new Label(); Label lDone = new Label(); Label lNext; // PREINIT: emitPushArgument(MethodHandleImpl.LoopClauses.class, invoker.arguments[1]); mv.visitFieldInsn(Opcodes.GETFIELD, LOOP_CLAUSES, "clauses", MHARY2); emitAstoreInsn(clauseDataIndex); // INIT: for (int c = 0, state = 0; c < nClauses; ++c) { MethodType cInitType = loopType.changeReturnType(loopClauseTypes[c].basicTypeClass()); emitLoopHandleInvoke(invoker, inits, c, args, false, cInitType, loopLocalStateTypes, clauseDataIndex, firstLoopStateIndex); if (cInitType.returnType() != void.class) { emitStoreInsn(BasicType.basicType(cInitType.returnType()), firstLoopStateIndex + state); ++state; } } // LOOP: mv.visitLabel(lLoop); for (int c = 0, state = 0; c < nClauses; ++c) { lNext = new Label(); MethodType stepType = loopHandleType.changeReturnType(loopClauseTypes[c].basicTypeClass()); boolean isVoid = stepType.returnType() == void.class; // invoke loop step emitLoopHandleInvoke(invoker, steps, c, args, true, stepType, loopLocalStateTypes, clauseDataIndex, firstLoopStateIndex); if (!isVoid) { emitStoreInsn(BasicType.basicType(stepType.returnType()), firstLoopStateIndex + state); ++state; } // invoke loop predicate emitLoopHandleInvoke(invoker, preds, c, args, true, predType, loopLocalStateTypes, clauseDataIndex, firstLoopStateIndex); mv.visitJumpInsn(Opcodes.IFNE, lNext); // invoke fini emitLoopHandleInvoke(invoker, finis, c, args, true, finiType, loopLocalStateTypes, clauseDataIndex, firstLoopStateIndex); mv.visitJumpInsn(Opcodes.GOTO, lDone); // this is the beginning of the next loop clause mv.visitLabel(lNext); } mv.visitJumpInsn(Opcodes.GOTO, lLoop); // DONE: mv.visitLabel(lDone); return result; } private int extendLocalsMap(Class[] types) { int firstSlot = localsMap.length - 1; localsMap = Arrays.copyOf(localsMap, localsMap.length + types.length); localClasses = Arrays.copyOf(localClasses, localClasses.length + types.length); System.arraycopy(types, 0, localClasses, firstSlot, types.length); int index = localsMap[firstSlot - 1] + 1; int lastSlots = 0; for (int i = 0; i < types.length; ++i) { localsMap[firstSlot + i] = index; lastSlots = BasicType.basicType(localClasses[firstSlot + i]).basicTypeSlots(); index += lastSlots; } localsMap[localsMap.length - 1] = index - lastSlots; return firstSlot; } private void emitLoopHandleInvoke(Name holder, int handles, int clause, Name args, boolean pushLocalState, MethodType type, Class[] loopLocalStateTypes, int clauseDataSlot, int firstLoopStateSlot) { // load handle for clause emitPushClauseArray(clauseDataSlot, handles); emitIconstInsn(clause); mv.visitInsn(Opcodes.AALOAD); // load loop state (preceding the other arguments) if (pushLocalState) { for (int s = 0; s < loopLocalStateTypes.length; ++s) { emitLoadInsn(BasicType.basicType(loopLocalStateTypes[s]), firstLoopStateSlot + s); } } // load loop args (skip 0: method handle) emitPushArguments(args, 1); mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, MH, "invokeBasic", type.toMethodDescriptorString(), false); } private void emitPushClauseArray(int clauseDataSlot, int which) { emitAloadInsn(clauseDataSlot); emitIconstInsn(which - 1); mv.visitInsn(Opcodes.AALOAD); } private void emitZero(BasicType type) { switch (type) { case I_TYPE: mv.visitInsn(Opcodes.ICONST_0); break; case J_TYPE: mv.visitInsn(Opcodes.LCONST_0); break; case F_TYPE: mv.visitInsn(Opcodes.FCONST_0); break; case D_TYPE: mv.visitInsn(Opcodes.DCONST_0); break; case L_TYPE: mv.visitInsn(Opcodes.ACONST_NULL); break; default: throw new InternalError("unknown type: " + type); } } private void emitPushArguments(Name args, int start) { MethodType type = args.function.methodType(); for (int i = start; i < args.arguments.length; i++) { emitPushArgument(type.parameterType(i), args.arguments[i]); } } private void emitPushArgument(Name name, int paramIndex) { Object arg = name.arguments[paramIndex]; Class ptype = name.function.methodType().parameterType(paramIndex); emitPushArgument(ptype, arg); } private void emitPushArgument(Class ptype, Object arg) { BasicType bptype = basicType(ptype); if (arg instanceof Name) { Name n = (Name) arg; emitLoadInsn(n.type, n.index()); emitImplicitConversion(n.type, ptype, n); } else if ((arg == null || arg instanceof String) && bptype == L_TYPE) { emitConst(arg); } else { if (Wrapper.isWrapperType(arg.getClass()) && bptype != L_TYPE) { emitConst(arg); } else { mv.visitLdcInsn(constantPlaceholder(arg)); emitImplicitConversion(L_TYPE, ptype, arg); } } } /** * Store the name to its local, if necessary. */ private void emitStoreResult(Name name) { if (name != null && name.type != V_TYPE) { // non-void: actually assign emitStoreInsn(name.type, name.index()); } } /** * Emits a return statement from a LF invoker. If required, the result type is cast to the correct return type. */ private void emitReturn(Name onStack) { // return statement Class rclass = invokerType.returnType(); BasicType rtype = lambdaForm.returnType(); assert(rtype == basicType(rclass)); // must agree if (rtype == V_TYPE) { // void mv.visitInsn(Opcodes.RETURN); // it doesn't matter what rclass is; the JVM will discard any value } else { LambdaForm.Name rn = lambdaForm.names[lambdaForm.result]; // put return value on the stack if it is not already there if (rn != onStack) { emitLoadInsn(rtype, lambdaForm.result); } emitImplicitConversion(rtype, rclass, rn); // generate actual return statement emitReturnInsn(rtype); } } /** * Emit a type conversion bytecode casting from "from" to "to". */ private void emitPrimCast(Wrapper from, Wrapper to) { // Here's how. // - indicates forbidden // <-> indicates implicit // to ----> boolean byte short char int long float double // from boolean <-> - - - - - - - // byte - <-> i2s i2c <-> i2l i2f i2d // short - i2b <-> i2c <-> i2l i2f i2d // char - i2b i2s <-> <-> i2l i2f i2d // int - i2b i2s i2c <-> i2l i2f i2d // long - l2i,i2b l2i,i2s l2i,i2c l2i <-> l2f l2d // float - f2i,i2b f2i,i2s f2i,i2c f2i f2l <-> f2d // double - d2i,i2b d2i,i2s d2i,i2c d2i d2l d2f <-> if (from == to) { // no cast required, should be dead code anyway return; } if (from.isSubwordOrInt()) { // cast from {byte,short,char,int} to anything emitI2X(to); } else { // cast from {long,float,double} to anything if (to.isSubwordOrInt()) { // cast to {byte,short,char,int} emitX2I(from); if (to.bitWidth() < 32) { // targets other than int require another conversion emitI2X(to); } } else { // cast to {long,float,double} - this is verbose boolean error = false; switch (from) { case LONG: switch (to) { case FLOAT: mv.visitInsn(Opcodes.L2F); break; case DOUBLE: mv.visitInsn(Opcodes.L2D); break; default: error = true; break; } break; case FLOAT: switch (to) { case LONG : mv.visitInsn(Opcodes.F2L); break; case DOUBLE: mv.visitInsn(Opcodes.F2D); break; default: error = true; break; } break; case DOUBLE: switch (to) { case LONG : mv.visitInsn(Opcodes.D2L); break; case FLOAT: mv.visitInsn(Opcodes.D2F); break; default: error = true; break; } break; default: error = true; break; } if (error) { throw new IllegalStateException("unhandled prim cast: " + from + "2" + to); } } } } private void emitI2X(Wrapper type) { switch (type) { case BYTE: mv.visitInsn(Opcodes.I2B); break; case SHORT: mv.visitInsn(Opcodes.I2S); break; case CHAR: mv.visitInsn(Opcodes.I2C); break; case INT: /* naught */ break; case LONG: mv.visitInsn(Opcodes.I2L); break; case FLOAT: mv.visitInsn(Opcodes.I2F); break; case DOUBLE: mv.visitInsn(Opcodes.I2D); break; case BOOLEAN: // For compatibility with ValueConversions and explicitCastArguments: mv.visitInsn(Opcodes.ICONST_1); mv.visitInsn(Opcodes.IAND); break; default: throw new InternalError("unknown type: " + type); } } private void emitX2I(Wrapper type) { switch (type) { case LONG: mv.visitInsn(Opcodes.L2I); break; case FLOAT: mv.visitInsn(Opcodes.F2I); break; case DOUBLE: mv.visitInsn(Opcodes.D2I); break; default: throw new InternalError("unknown type: " + type); } } /** * Generate bytecode for a LambdaForm.vmentry which calls interpretWithArguments. */ static MemberName generateLambdaFormInterpreterEntryPoint(MethodType mt) { assert(isValidSignature(basicTypeSignature(mt))); String name = "interpret_"+basicTypeChar(mt.returnType()); MethodType type = mt; // includes leading argument type = type.changeParameterType(0, MethodHandle.class); InvokerBytecodeGenerator g = new InvokerBytecodeGenerator("LFI", name, type); return g.loadMethod(g.generateLambdaFormInterpreterEntryPointBytes()); } private byte[] generateLambdaFormInterpreterEntryPointBytes() { classFilePrologue(); methodPrologue(); // Suppress this method in backtraces displayed to the user. mv.visitAnnotation(LF_HIDDEN_SIG, true); // Don't inline the interpreter entry. mv.visitAnnotation(DONTINLINE_SIG, true); // create parameter array emitIconstInsn(invokerType.parameterCount()); mv.visitTypeInsn(Opcodes.ANEWARRAY, "java/lang/Object"); // fill parameter array for (int i = 0; i < invokerType.parameterCount(); i++) { Class ptype = invokerType.parameterType(i); mv.visitInsn(Opcodes.DUP); emitIconstInsn(i); emitLoadInsn(basicType(ptype), i); // box if primitive type if (ptype.isPrimitive()) { emitBoxing(Wrapper.forPrimitiveType(ptype)); } mv.visitInsn(Opcodes.AASTORE); } // invoke emitAloadInsn(0); mv.visitFieldInsn(Opcodes.GETFIELD, MH, "form", "Ljava/lang/invoke/LambdaForm;"); mv.visitInsn(Opcodes.SWAP); // swap form and array; avoid local variable mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, LF, "interpretWithArguments", "([Ljava/lang/Object;)Ljava/lang/Object;", false); // maybe unbox Class rtype = invokerType.returnType(); if (rtype.isPrimitive() && rtype != void.class) { emitUnboxing(Wrapper.forPrimitiveType(rtype)); } // return statement emitReturnInsn(basicType(rtype)); methodEpilogue(); bogusMethod(invokerType); final byte[] classFile = cw.toByteArray(); maybeDump(classFile); return classFile; } /** * Generate bytecode for a NamedFunction invoker. */ static MemberName generateNamedFunctionInvoker(MethodTypeForm typeForm) { MethodType invokerType = NamedFunction.INVOKER_METHOD_TYPE; String invokerName = "invoke_" + shortenSignature(basicTypeSignature(typeForm.erasedType())); InvokerBytecodeGenerator g = new InvokerBytecodeGenerator("NFI", invokerName, invokerType); return g.loadMethod(g.generateNamedFunctionInvokerImpl(typeForm)); } private byte[] generateNamedFunctionInvokerImpl(MethodTypeForm typeForm) { MethodType dstType = typeForm.erasedType(); classFilePrologue(); methodPrologue(); // Suppress this method in backtraces displayed to the user. mv.visitAnnotation(LF_HIDDEN_SIG, true); // Force inlining of this invoker method. mv.visitAnnotation(FORCEINLINE_SIG, true); // Load receiver emitAloadInsn(0); // Load arguments from array for (int i = 0; i < dstType.parameterCount(); i++) { emitAloadInsn(1); emitIconstInsn(i); mv.visitInsn(Opcodes.AALOAD); // Maybe unbox Class dptype = dstType.parameterType(i); if (dptype.isPrimitive()) { Wrapper dstWrapper = Wrapper.forBasicType(dptype); Wrapper srcWrapper = dstWrapper.isSubwordOrInt() ? Wrapper.INT : dstWrapper; // narrow subword from int emitUnboxing(srcWrapper); emitPrimCast(srcWrapper, dstWrapper); } } // Invoke String targetDesc = dstType.basicType().toMethodDescriptorString(); mv.visitMethodInsn(Opcodes.INVOKEVIRTUAL, MH, "invokeBasic", targetDesc, false); // Box primitive types Class rtype = dstType.returnType(); if (rtype != void.class && rtype.isPrimitive()) { Wrapper srcWrapper = Wrapper.forBasicType(rtype); Wrapper dstWrapper = srcWrapper.isSubwordOrInt() ? Wrapper.INT : srcWrapper; // widen subword to int // boolean casts not allowed emitPrimCast(srcWrapper, dstWrapper); emitBoxing(dstWrapper); } // If the return type is void we return a null reference. if (rtype == void.class) { mv.visitInsn(Opcodes.ACONST_NULL); } emitReturnInsn(L_TYPE); // NOTE: NamedFunction invokers always return a reference value. methodEpilogue(); bogusMethod(dstType); final byte[] classFile = cw.toByteArray(); maybeDump(classFile); return classFile; } /** * Emit a bogus method that just loads some string constants. This is to get the constants into the constant pool * for debugging purposes. */ private void bogusMethod(Object os) { if (DUMP_CLASS_FILES) { mv = cw.visitMethod(Opcodes.ACC_STATIC, "dummy", "()V", null, null); mv.visitLdcInsn(os.toString()); mv.visitInsn(Opcodes.POP); mv.visitInsn(Opcodes.RETURN); mv.visitMaxs(0, 0); mv.visitEnd(); } } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy