All Downloads are FREE. Search and download functionalities are using the official Maven repository.

META-INF.modules.java.base.classes.java.lang.invoke.LambdaForm Maven / Gradle / Ivy

There is a newer version: 2024-05-10
Show newest version
/*
 * Copyright (c) 2011, 2018, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.lang.invoke;

import jdk.internal.perf.PerfCounter;
import jdk.internal.vm.annotation.DontInline;
import jdk.internal.vm.annotation.Stable;
import sun.invoke.util.Wrapper;

import java.lang.annotation.ElementType;
import java.lang.annotation.Retention;
import java.lang.annotation.RetentionPolicy;
import java.lang.annotation.Target;
import java.lang.reflect.Method;
import java.util.Arrays;
import java.util.HashMap;

import static java.lang.invoke.LambdaForm.BasicType.*;
import static java.lang.invoke.MethodHandleNatives.Constants.REF_invokeStatic;
import static java.lang.invoke.MethodHandleStatics.*;

/**
 * The symbolic, non-executable form of a method handle's invocation semantics.
 * It consists of a series of names.
 * The first N (N=arity) names are parameters,
 * while any remaining names are temporary values.
 * Each temporary specifies the application of a function to some arguments.
 * The functions are method handles, while the arguments are mixes of
 * constant values and local names.
 * The result of the lambda is defined as one of the names, often the last one.
 * 

* Here is an approximate grammar: *

{@code
 * LambdaForm = "(" ArgName* ")=>{" TempName* Result "}"
 * ArgName = "a" N ":" T
 * TempName = "t" N ":" T "=" Function "(" Argument* ");"
 * Function = ConstantValue
 * Argument = NameRef | ConstantValue
 * Result = NameRef | "void"
 * NameRef = "a" N | "t" N
 * N = (any whole number)
 * T = "L" | "I" | "J" | "F" | "D" | "V"
 * }
* Names are numbered consecutively from left to right starting at zero. * (The letters are merely a taste of syntax sugar.) * Thus, the first temporary (if any) is always numbered N (where N=arity). * Every occurrence of a name reference in an argument list must refer to * a name previously defined within the same lambda. * A lambda has a void result if and only if its result index is -1. * If a temporary has the type "V", it cannot be the subject of a NameRef, * even though possesses a number. * Note that all reference types are erased to "L", which stands for {@code Object}. * All subword types (boolean, byte, short, char) are erased to "I" which is {@code int}. * The other types stand for the usual primitive types. *

* Function invocation closely follows the static rules of the Java verifier. * Arguments and return values must exactly match when their "Name" types are * considered. * Conversions are allowed only if they do not change the erased type. *

    *
  • L = Object: casts are used freely to convert into and out of reference types *
  • I = int: subword types are forcibly narrowed when passed as arguments (see {@code explicitCastArguments}) *
  • J = long: no implicit conversions *
  • F = float: no implicit conversions *
  • D = double: no implicit conversions *
  • V = void: a function result may be void if and only if its Name is of type "V" *
* Although implicit conversions are not allowed, explicit ones can easily be * encoded by using temporary expressions which call type-transformed identity functions. *

* Examples: *

{@code
 * (a0:J)=>{ a0 }
 *     == identity(long)
 * (a0:I)=>{ t1:V = System.out#println(a0); void }
 *     == System.out#println(int)
 * (a0:L)=>{ t1:V = System.out#println(a0); a0 }
 *     == identity, with printing side-effect
 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 *                 t3:L = BoundMethodHandle#target(a0);
 *                 t4:L = MethodHandle#invoke(t3, t2, a1); t4 }
 *     == general invoker for unary insertArgument combination
 * (a0:L, a1:L)=>{ t2:L = FilterMethodHandle#filter(a0);
 *                 t3:L = MethodHandle#invoke(t2, a1);
 *                 t4:L = FilterMethodHandle#target(a0);
 *                 t5:L = MethodHandle#invoke(t4, t3); t5 }
 *     == general invoker for unary filterArgument combination
 * (a0:L, a1:L)=>{ ...(same as previous example)...
 *                 t5:L = MethodHandle#invoke(t4, t3, a1); t5 }
 *     == general invoker for unary/unary foldArgument combination
 * (a0:L, a1:I)=>{ t2:I = identity(long).asType((int)->long)(a1); t2 }
 *     == invoker for identity method handle which performs i2l
 * (a0:L, a1:L)=>{ t2:L = BoundMethodHandle#argument(a0);
 *                 t3:L = Class#cast(t2,a1); t3 }
 *     == invoker for identity method handle which performs cast
 * }
*

* @author John Rose, JSR 292 EG */ class LambdaForm { final int arity; final int result; final boolean forceInline; final MethodHandle customized; @Stable final Name[] names; final Kind kind; MemberName vmentry; // low-level behavior, or null if not yet prepared private boolean isCompiled; // Either a LambdaForm cache (managed by LambdaFormEditor) or a link to uncustomized version (for customized LF) volatile Object transformCache; public static final int VOID_RESULT = -1, LAST_RESULT = -2; enum BasicType { L_TYPE('L', Object.class, Wrapper.OBJECT), // all reference types I_TYPE('I', int.class, Wrapper.INT), J_TYPE('J', long.class, Wrapper.LONG), F_TYPE('F', float.class, Wrapper.FLOAT), D_TYPE('D', double.class, Wrapper.DOUBLE), // all primitive types V_TYPE('V', void.class, Wrapper.VOID); // not valid in all contexts static final @Stable BasicType[] ALL_TYPES = BasicType.values(); static final @Stable BasicType[] ARG_TYPES = Arrays.copyOf(ALL_TYPES, ALL_TYPES.length-1); static final int ARG_TYPE_LIMIT = ARG_TYPES.length; static final int TYPE_LIMIT = ALL_TYPES.length; // Derived int constants, which (unlike the enums) can be constant folded. // We can remove them when JDK-8161245 is fixed. static final byte L_TYPE_NUM = (byte) L_TYPE.ordinal(), I_TYPE_NUM = (byte) I_TYPE.ordinal(), J_TYPE_NUM = (byte) J_TYPE.ordinal(), F_TYPE_NUM = (byte) F_TYPE.ordinal(), D_TYPE_NUM = (byte) D_TYPE.ordinal(), V_TYPE_NUM = (byte) V_TYPE.ordinal(); final char btChar; final Class btClass; final Wrapper btWrapper; private BasicType(char btChar, Class btClass, Wrapper wrapper) { this.btChar = btChar; this.btClass = btClass; this.btWrapper = wrapper; } char basicTypeChar() { return btChar; } Class basicTypeClass() { return btClass; } Wrapper basicTypeWrapper() { return btWrapper; } int basicTypeSlots() { return btWrapper.stackSlots(); } static BasicType basicType(byte type) { return ALL_TYPES[type]; } static BasicType basicType(char type) { switch (type) { case 'L': return L_TYPE; case 'I': return I_TYPE; case 'J': return J_TYPE; case 'F': return F_TYPE; case 'D': return D_TYPE; case 'V': return V_TYPE; // all subword types are represented as ints case 'Z': case 'B': case 'S': case 'C': return I_TYPE; default: throw newInternalError("Unknown type char: '"+type+"'"); } } static BasicType basicType(Wrapper type) { char c = type.basicTypeChar(); return basicType(c); } static BasicType basicType(Class type) { if (!type.isPrimitive()) return L_TYPE; return basicType(Wrapper.forPrimitiveType(type)); } static BasicType[] basicTypes(String types) { BasicType[] btypes = new BasicType[types.length()]; for (int i = 0; i < btypes.length; i++) { btypes[i] = basicType(types.charAt(i)); } return btypes; } static String basicTypeDesc(BasicType[] types) { if (types == null) { return null; } if (types.length == 0) { return ""; } StringBuilder sb = new StringBuilder(); for (BasicType bt : types) { sb.append(bt.basicTypeChar()); } return sb.toString(); } static int[] basicTypeOrds(BasicType[] types) { if (types == null) { return null; } int[] a = new int[types.length]; for(int i = 0; i < types.length; ++i) { a[i] = types[i].ordinal(); } return a; } static char basicTypeChar(Class type) { return basicType(type).btChar; } static byte[] basicTypesOrd(Class[] types) { byte[] ords = new byte[types.length]; for (int i = 0; i < ords.length; i++) { ords[i] = (byte)basicType(types[i]).ordinal(); } return ords; } static boolean isBasicTypeChar(char c) { return "LIJFDV".indexOf(c) >= 0; } static boolean isArgBasicTypeChar(char c) { return "LIJFD".indexOf(c) >= 0; } static { assert(checkBasicType()); } private static boolean checkBasicType() { for (int i = 0; i < ARG_TYPE_LIMIT; i++) { assert ARG_TYPES[i].ordinal() == i; assert ARG_TYPES[i] == ALL_TYPES[i]; } for (int i = 0; i < TYPE_LIMIT; i++) { assert ALL_TYPES[i].ordinal() == i; } assert ALL_TYPES[TYPE_LIMIT - 1] == V_TYPE; assert !Arrays.asList(ARG_TYPES).contains(V_TYPE); return true; } } enum Kind { GENERIC("invoke"), ZERO("zero"), IDENTITY("identity"), BOUND_REINVOKER("BMH.reinvoke", "reinvoke"), REINVOKER("MH.reinvoke", "reinvoke"), DELEGATE("MH.delegate", "delegate"), EXACT_LINKER("MH.invokeExact_MT", "invokeExact_MT"), EXACT_INVOKER("MH.exactInvoker", "exactInvoker"), GENERIC_LINKER("MH.invoke_MT", "invoke_MT"), GENERIC_INVOKER("MH.invoker", "invoker"), LINK_TO_TARGET_METHOD("linkToTargetMethod"), LINK_TO_CALL_SITE("linkToCallSite"), DIRECT_INVOKE_VIRTUAL("DMH.invokeVirtual", "invokeVirtual"), DIRECT_INVOKE_SPECIAL("DMH.invokeSpecial", "invokeSpecial"), DIRECT_INVOKE_SPECIAL_IFC("DMH.invokeSpecialIFC", "invokeSpecialIFC"), DIRECT_INVOKE_STATIC("DMH.invokeStatic", "invokeStatic"), DIRECT_NEW_INVOKE_SPECIAL("DMH.newInvokeSpecial", "newInvokeSpecial"), DIRECT_INVOKE_INTERFACE("DMH.invokeInterface", "invokeInterface"), DIRECT_INVOKE_STATIC_INIT("DMH.invokeStaticInit", "invokeStaticInit"), GET_REFERENCE("getReference"), PUT_REFERENCE("putReference"), GET_REFERENCE_VOLATILE("getReferenceVolatile"), PUT_REFERENCE_VOLATILE("putReferenceVolatile"), GET_INT("getInt"), PUT_INT("putInt"), GET_INT_VOLATILE("getIntVolatile"), PUT_INT_VOLATILE("putIntVolatile"), GET_BOOLEAN("getBoolean"), PUT_BOOLEAN("putBoolean"), GET_BOOLEAN_VOLATILE("getBooleanVolatile"), PUT_BOOLEAN_VOLATILE("putBooleanVolatile"), GET_BYTE("getByte"), PUT_BYTE("putByte"), GET_BYTE_VOLATILE("getByteVolatile"), PUT_BYTE_VOLATILE("putByteVolatile"), GET_CHAR("getChar"), PUT_CHAR("putChar"), GET_CHAR_VOLATILE("getCharVolatile"), PUT_CHAR_VOLATILE("putCharVolatile"), GET_SHORT("getShort"), PUT_SHORT("putShort"), GET_SHORT_VOLATILE("getShortVolatile"), PUT_SHORT_VOLATILE("putShortVolatile"), GET_LONG("getLong"), PUT_LONG("putLong"), GET_LONG_VOLATILE("getLongVolatile"), PUT_LONG_VOLATILE("putLongVolatile"), GET_FLOAT("getFloat"), PUT_FLOAT("putFloat"), GET_FLOAT_VOLATILE("getFloatVolatile"), PUT_FLOAT_VOLATILE("putFloatVolatile"), GET_DOUBLE("getDouble"), PUT_DOUBLE("putDouble"), GET_DOUBLE_VOLATILE("getDoubleVolatile"), PUT_DOUBLE_VOLATILE("putDoubleVolatile"), TRY_FINALLY("tryFinally"), COLLECT("collect"), CONVERT("convert"), SPREAD("spread"), LOOP("loop"), FIELD("field"), GUARD("guard"), GUARD_WITH_CATCH("guardWithCatch"), VARHANDLE_EXACT_INVOKER("VH.exactInvoker"), VARHANDLE_INVOKER("VH.invoker", "invoker"), VARHANDLE_LINKER("VH.invoke_MT", "invoke_MT"); final String defaultLambdaName; final String methodName; private Kind(String defaultLambdaName) { this(defaultLambdaName, defaultLambdaName); } private Kind(String defaultLambdaName, String methodName) { this.defaultLambdaName = defaultLambdaName; this.methodName = methodName; } } LambdaForm(int arity, Name[] names, int result) { this(arity, names, result, /*forceInline=*/true, /*customized=*/null, Kind.GENERIC); } LambdaForm(int arity, Name[] names, int result, Kind kind) { this(arity, names, result, /*forceInline=*/true, /*customized=*/null, kind); } LambdaForm(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized) { this(arity, names, result, forceInline, customized, Kind.GENERIC); } LambdaForm(int arity, Name[] names, int result, boolean forceInline, MethodHandle customized, Kind kind) { assert(namesOK(arity, names)); this.arity = arity; this.result = fixResult(result, names); this.names = names.clone(); this.forceInline = forceInline; this.customized = customized; this.kind = kind; int maxOutArity = normalize(); if (maxOutArity > MethodType.MAX_MH_INVOKER_ARITY) { // Cannot use LF interpreter on very high arity expressions. assert(maxOutArity <= MethodType.MAX_JVM_ARITY); compileToBytecode(); } } LambdaForm(int arity, Name[] names) { this(arity, names, LAST_RESULT, /*forceInline=*/true, /*customized=*/null, Kind.GENERIC); } LambdaForm(int arity, Name[] names, Kind kind) { this(arity, names, LAST_RESULT, /*forceInline=*/true, /*customized=*/null, kind); } LambdaForm(int arity, Name[] names, boolean forceInline) { this(arity, names, LAST_RESULT, forceInline, /*customized=*/null, Kind.GENERIC); } LambdaForm(int arity, Name[] names, boolean forceInline, Kind kind) { this(arity, names, LAST_RESULT, forceInline, /*customized=*/null, kind); } LambdaForm(Name[] formals, Name[] temps, Name result) { this(formals.length, buildNames(formals, temps, result), LAST_RESULT, /*forceInline=*/true, /*customized=*/null); } LambdaForm(Name[] formals, Name[] temps, Name result, boolean forceInline) { this(formals.length, buildNames(formals, temps, result), LAST_RESULT, forceInline, /*customized=*/null); } private static Name[] buildNames(Name[] formals, Name[] temps, Name result) { int arity = formals.length; int length = arity + temps.length + (result == null ? 0 : 1); Name[] names = Arrays.copyOf(formals, length); System.arraycopy(temps, 0, names, arity, temps.length); if (result != null) names[length - 1] = result; return names; } private LambdaForm(MethodType mt) { // Make a blank lambda form, which returns a constant zero or null. // It is used as a template for managing the invocation of similar forms that are non-empty. // Called only from getPreparedForm. this.arity = mt.parameterCount(); this.result = (mt.returnType() == void.class || mt.returnType() == Void.class) ? -1 : arity; this.names = buildEmptyNames(arity, mt, result == -1); this.forceInline = true; this.customized = null; this.kind = Kind.ZERO; assert(nameRefsAreLegal()); assert(isEmpty()); String sig = null; assert(isValidSignature(sig = basicTypeSignature())); assert(sig.equals(basicTypeSignature())) : sig + " != " + basicTypeSignature(); } private static Name[] buildEmptyNames(int arity, MethodType mt, boolean isVoid) { Name[] names = arguments(isVoid ? 0 : 1, mt); if (!isVoid) { Name zero = new Name(constantZero(basicType(mt.returnType()))); names[arity] = zero.newIndex(arity); } return names; } private static int fixResult(int result, Name[] names) { if (result == LAST_RESULT) result = names.length - 1; // might still be void if (result >= 0 && names[result].type == V_TYPE) result = VOID_RESULT; return result; } static boolean debugNames() { return DEBUG_NAME_COUNTERS != null; } static void associateWithDebugName(LambdaForm form, String name) { assert (debugNames()); synchronized (DEBUG_NAMES) { DEBUG_NAMES.put(form, name); } } String lambdaName() { if (DEBUG_NAMES != null) { synchronized (DEBUG_NAMES) { String name = DEBUG_NAMES.get(this); if (name == null) { name = generateDebugName(); } return name; } } return kind.defaultLambdaName; } private String generateDebugName() { assert (debugNames()); String debugNameStem = kind.defaultLambdaName; Integer ctr = DEBUG_NAME_COUNTERS.getOrDefault(debugNameStem, 0); DEBUG_NAME_COUNTERS.put(debugNameStem, ctr + 1); StringBuilder buf = new StringBuilder(debugNameStem); int leadingZero = buf.length(); buf.append((int) ctr); for (int i = buf.length() - leadingZero; i < 3; i++) { buf.insert(leadingZero, '0'); } buf.append('_'); buf.append(basicTypeSignature()); String name = buf.toString(); associateWithDebugName(this, name); return name; } private static boolean namesOK(int arity, Name[] names) { for (int i = 0; i < names.length; i++) { Name n = names[i]; assert(n != null) : "n is null"; if (i < arity) assert( n.isParam()) : n + " is not param at " + i; else assert(!n.isParam()) : n + " is param at " + i; } return true; } /** Customize LambdaForm for a particular MethodHandle */ LambdaForm customize(MethodHandle mh) { LambdaForm customForm = new LambdaForm(arity, names, result, forceInline, mh, kind); if (COMPILE_THRESHOLD >= 0 && isCompiled) { // If shared LambdaForm has been compiled, compile customized version as well. customForm.compileToBytecode(); } customForm.transformCache = this; // LambdaFormEditor should always use uncustomized form. return customForm; } /** Get uncustomized flavor of the LambdaForm */ LambdaForm uncustomize() { if (customized == null) { return this; } assert(transformCache != null); // Customized LambdaForm should always has a link to uncustomized version. LambdaForm uncustomizedForm = (LambdaForm)transformCache; if (COMPILE_THRESHOLD >= 0 && isCompiled) { // If customized LambdaForm has been compiled, compile uncustomized version as well. uncustomizedForm.compileToBytecode(); } return uncustomizedForm; } /** Renumber and/or replace params so that they are interned and canonically numbered. * @return maximum argument list length among the names (since we have to pass over them anyway) */ private int normalize() { Name[] oldNames = null; int maxOutArity = 0; int changesStart = 0; for (int i = 0; i < names.length; i++) { Name n = names[i]; if (!n.initIndex(i)) { if (oldNames == null) { oldNames = names.clone(); changesStart = i; } names[i] = n.cloneWithIndex(i); } if (n.arguments != null && maxOutArity < n.arguments.length) maxOutArity = n.arguments.length; } if (oldNames != null) { int startFixing = arity; if (startFixing <= changesStart) startFixing = changesStart+1; for (int i = startFixing; i < names.length; i++) { Name fixed = names[i].replaceNames(oldNames, names, changesStart, i); names[i] = fixed.newIndex(i); } } assert(nameRefsAreLegal()); int maxInterned = Math.min(arity, INTERNED_ARGUMENT_LIMIT); boolean needIntern = false; for (int i = 0; i < maxInterned; i++) { Name n = names[i], n2 = internArgument(n); if (n != n2) { names[i] = n2; needIntern = true; } } if (needIntern) { for (int i = arity; i < names.length; i++) { names[i].internArguments(); } } assert(nameRefsAreLegal()); return maxOutArity; } /** * Check that all embedded Name references are localizable to this lambda, * and are properly ordered after their corresponding definitions. *

* Note that a Name can be local to multiple lambdas, as long as * it possesses the same index in each use site. * This allows Name references to be freely reused to construct * fresh lambdas, without confusion. */ boolean nameRefsAreLegal() { assert(arity >= 0 && arity <= names.length); assert(result >= -1 && result < names.length); // Do all names possess an index consistent with their local definition order? for (int i = 0; i < arity; i++) { Name n = names[i]; assert(n.index() == i) : Arrays.asList(n.index(), i); assert(n.isParam()); } // Also, do all local name references for (int i = arity; i < names.length; i++) { Name n = names[i]; assert(n.index() == i); for (Object arg : n.arguments) { if (arg instanceof Name) { Name n2 = (Name) arg; int i2 = n2.index; assert(0 <= i2 && i2 < names.length) : n.debugString() + ": 0 <= i2 && i2 < names.length: 0 <= " + i2 + " < " + names.length; assert(names[i2] == n2) : Arrays.asList("-1-", i, "-2-", n.debugString(), "-3-", i2, "-4-", n2.debugString(), "-5-", names[i2].debugString(), "-6-", this); assert(i2 < i); // ref must come after def! } } } return true; } /** Invoke this form on the given arguments. */ // final Object invoke(Object... args) throws Throwable { // // NYI: fit this into the fast path? // return interpretWithArguments(args); // } /** Report the return type. */ BasicType returnType() { if (result < 0) return V_TYPE; Name n = names[result]; return n.type; } /** Report the N-th argument type. */ BasicType parameterType(int n) { return parameter(n).type; } /** Report the N-th argument name. */ Name parameter(int n) { assert(n < arity); Name param = names[n]; assert(param.isParam()); return param; } /** Report the N-th argument type constraint. */ Object parameterConstraint(int n) { return parameter(n).constraint; } /** Report the arity. */ int arity() { return arity; } /** Report the number of expressions (non-parameter names). */ int expressionCount() { return names.length - arity; } /** Return the method type corresponding to my basic type signature. */ MethodType methodType() { Class[] ptypes = new Class[arity]; for (int i = 0; i < arity; ++i) { ptypes[i] = parameterType(i).btClass; } return MethodType.makeImpl(returnType().btClass, ptypes, true); } /** Return ABC_Z, where the ABC are parameter type characters, and Z is the return type character. */ final String basicTypeSignature() { StringBuilder buf = new StringBuilder(arity() + 3); for (int i = 0, a = arity(); i < a; i++) buf.append(parameterType(i).basicTypeChar()); return buf.append('_').append(returnType().basicTypeChar()).toString(); } static int signatureArity(String sig) { assert(isValidSignature(sig)); return sig.indexOf('_'); } static BasicType signatureReturn(String sig) { return basicType(sig.charAt(signatureArity(sig) + 1)); } static boolean isValidSignature(String sig) { int arity = sig.indexOf('_'); if (arity < 0) return false; // must be of the form *_* int siglen = sig.length(); if (siglen != arity + 2) return false; // *_X for (int i = 0; i < siglen; i++) { if (i == arity) continue; // skip '_' char c = sig.charAt(i); if (c == 'V') return (i == siglen - 1 && arity == siglen - 2); if (!isArgBasicTypeChar(c)) return false; // must be [LIJFD] } return true; // [LIJFD]*_[LIJFDV] } static MethodType signatureType(String sig) { Class[] ptypes = new Class[signatureArity(sig)]; for (int i = 0; i < ptypes.length; i++) ptypes[i] = basicType(sig.charAt(i)).btClass; Class rtype = signatureReturn(sig).btClass; return MethodType.makeImpl(rtype, ptypes, true); } static MethodType basicMethodType(MethodType mt) { return signatureType(basicTypeSignature(mt)); } /** * Check if i-th name is a call to MethodHandleImpl.selectAlternative. */ boolean isSelectAlternative(int pos) { // selectAlternative idiom: // t_{n}:L=MethodHandleImpl.selectAlternative(...) // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...) if (pos+1 >= names.length) return false; Name name0 = names[pos]; Name name1 = names[pos+1]; return name0.refersTo(MethodHandleImpl.class, "selectAlternative") && name1.isInvokeBasic() && name1.lastUseIndex(name0) == 0 && // t_{n+1}:?=MethodHandle.invokeBasic(t_{n}, ...) lastUseIndex(name0) == pos+1; // t_{n} is local: used only in t_{n+1} } private boolean isMatchingIdiom(int pos, String idiomName, int nArgs) { if (pos+2 >= names.length) return false; Name name0 = names[pos]; Name name1 = names[pos+1]; Name name2 = names[pos+2]; return name1.refersTo(MethodHandleImpl.class, idiomName) && name0.isInvokeBasic() && name2.isInvokeBasic() && name1.lastUseIndex(name0) == nArgs && // t_{n+1}:L=MethodHandleImpl.(, t_{n}); lastUseIndex(name0) == pos+1 && // t_{n} is local: used only in t_{n+1} name2.lastUseIndex(name1) == 1 && // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) lastUseIndex(name1) == pos+2; // t_{n+1} is local: used only in t_{n+2} } /** * Check if i-th name is a start of GuardWithCatch idiom. */ boolean isGuardWithCatch(int pos) { // GuardWithCatch idiom: // t_{n}:L=MethodHandle.invokeBasic(...) // t_{n+1}:L=MethodHandleImpl.guardWithCatch(*, *, *, t_{n}); // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) return isMatchingIdiom(pos, "guardWithCatch", 3); } /** * Check if i-th name is a start of the tryFinally idiom. */ boolean isTryFinally(int pos) { // tryFinally idiom: // t_{n}:L=MethodHandle.invokeBasic(...) // t_{n+1}:L=MethodHandleImpl.tryFinally(*, *, t_{n}) // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) return isMatchingIdiom(pos, "tryFinally", 2); } /** * Check if i-th name is a start of the loop idiom. */ boolean isLoop(int pos) { // loop idiom: // t_{n}:L=MethodHandle.invokeBasic(...) // t_{n+1}:L=MethodHandleImpl.loop(types, *, t_{n}) // t_{n+2}:?=MethodHandle.invokeBasic(*, t_{n+1}) return isMatchingIdiom(pos, "loop", 2); } /* * Code generation issues: * * Compiled LFs should be reusable in general. * The biggest issue is how to decide when to pull a name into * the bytecode, versus loading a reified form from the MH data. * * For example, an asType wrapper may require execution of a cast * after a call to a MH. The target type of the cast can be placed * as a constant in the LF itself. This will force the cast type * to be compiled into the bytecodes and native code for the MH. * Or, the target type of the cast can be erased in the LF, and * loaded from the MH data. (Later on, if the MH as a whole is * inlined, the data will flow into the inlined instance of the LF, * as a constant, and the end result will be an optimal cast.) * * This erasure of cast types can be done with any use of * reference types. It can also be done with whole method * handles. Erasing a method handle might leave behind * LF code that executes correctly for any MH of a given * type, and load the required MH from the enclosing MH's data. * Or, the erasure might even erase the expected MT. * * Also, for direct MHs, the MemberName of the target * could be erased, and loaded from the containing direct MH. * As a simple case, a LF for all int-valued non-static * field getters would perform a cast on its input argument * (to non-constant base type derived from the MemberName) * and load an integer value from the input object * (at a non-constant offset also derived from the MemberName). * Such MN-erased LFs would be inlinable back to optimized * code, whenever a constant enclosing DMH is available * to supply a constant MN from its data. * * The main problem here is to keep LFs reasonably generic, * while ensuring that hot spots will inline good instances. * "Reasonably generic" means that we don't end up with * repeated versions of bytecode or machine code that do * not differ in their optimized form. Repeated versions * of machine would have the undesirable overheads of * (a) redundant compilation work and (b) extra I$ pressure. * To control repeated versions, we need to be ready to * erase details from LFs and move them into MH data, * whevener those details are not relevant to significant * optimization. "Significant" means optimization of * code that is actually hot. * * Achieving this may require dynamic splitting of MHs, by replacing * a generic LF with a more specialized one, on the same MH, * if (a) the MH is frequently executed and (b) the MH cannot * be inlined into a containing caller, such as an invokedynamic. * * Compiled LFs that are no longer used should be GC-able. * If they contain non-BCP references, they should be properly * interlinked with the class loader(s) that their embedded types * depend on. This probably means that reusable compiled LFs * will be tabulated (indexed) on relevant class loaders, * or else that the tables that cache them will have weak links. */ /** * Make this LF directly executable, as part of a MethodHandle. * Invariant: Every MH which is invoked must prepare its LF * before invocation. * (In principle, the JVM could do this very lazily, * as a sort of pre-invocation linkage step.) */ public void prepare() { if (COMPILE_THRESHOLD == 0 && !forceInterpretation() && !isCompiled) { compileToBytecode(); } if (this.vmentry != null) { // already prepared (e.g., a primitive DMH invoker form) return; } MethodType mtype = methodType(); LambdaForm prep = mtype.form().cachedLambdaForm(MethodTypeForm.LF_INTERPRET); if (prep == null) { assert (isValidSignature(basicTypeSignature())); prep = new LambdaForm(mtype); prep.vmentry = InvokerBytecodeGenerator.generateLambdaFormInterpreterEntryPoint(mtype); prep = mtype.form().setCachedLambdaForm(MethodTypeForm.LF_INTERPRET, prep); } this.vmentry = prep.vmentry; // TO DO: Maybe add invokeGeneric, invokeWithArguments } private static @Stable PerfCounter LF_FAILED; private static PerfCounter failedCompilationCounter() { if (LF_FAILED == null) { LF_FAILED = PerfCounter.newPerfCounter("java.lang.invoke.failedLambdaFormCompilations"); } return LF_FAILED; } /** Generate optimizable bytecode for this form. */ void compileToBytecode() { if (forceInterpretation()) { return; // this should not be compiled } if (vmentry != null && isCompiled) { return; // already compiled somehow } // Obtain the invoker MethodType outside of the following try block. // This ensures that an IllegalArgumentException is directly thrown if the // type would have 256 or more parameters MethodType invokerType = methodType(); assert(vmentry == null || vmentry.getMethodType().basicType().equals(invokerType)); try { vmentry = InvokerBytecodeGenerator.generateCustomizedCode(this, invokerType); if (TRACE_INTERPRETER) traceInterpreter("compileToBytecode", this); isCompiled = true; } catch (InvokerBytecodeGenerator.BytecodeGenerationException bge) { // bytecode generation failed - mark this LambdaForm as to be run in interpretation mode only invocationCounter = -1; failedCompilationCounter().increment(); if (LOG_LF_COMPILATION_FAILURE) { System.out.println("LambdaForm compilation failed: " + this); bge.printStackTrace(System.out); } } catch (Error e) { // Pass through any error throw e; } catch (Exception e) { // Wrap any exception throw newInternalError(this.toString(), e); } } // The next few routines are called only from assert expressions // They verify that the built-in invokers process the correct raw data types. private static boolean argumentTypesMatch(String sig, Object[] av) { int arity = signatureArity(sig); assert(av.length == arity) : "av.length == arity: av.length=" + av.length + ", arity=" + arity; assert(av[0] instanceof MethodHandle) : "av[0] not instace of MethodHandle: " + av[0]; MethodHandle mh = (MethodHandle) av[0]; MethodType mt = mh.type(); assert(mt.parameterCount() == arity-1); for (int i = 0; i < av.length; i++) { Class pt = (i == 0 ? MethodHandle.class : mt.parameterType(i-1)); assert(valueMatches(basicType(sig.charAt(i)), pt, av[i])); } return true; } private static boolean valueMatches(BasicType tc, Class type, Object x) { // The following line is needed because (...)void method handles can use non-void invokers if (type == void.class) tc = V_TYPE; // can drop any kind of value assert tc == basicType(type) : tc + " == basicType(" + type + ")=" + basicType(type); switch (tc) { case I_TYPE: assert checkInt(type, x) : "checkInt(" + type + "," + x +")"; break; case J_TYPE: assert x instanceof Long : "instanceof Long: " + x; break; case F_TYPE: assert x instanceof Float : "instanceof Float: " + x; break; case D_TYPE: assert x instanceof Double : "instanceof Double: " + x; break; case L_TYPE: assert checkRef(type, x) : "checkRef(" + type + "," + x + ")"; break; case V_TYPE: break; // allow anything here; will be dropped default: assert(false); } return true; } private static boolean checkInt(Class type, Object x) { assert(x instanceof Integer); if (type == int.class) return true; Wrapper w = Wrapper.forBasicType(type); assert(w.isSubwordOrInt()); Object x1 = Wrapper.INT.wrap(w.wrap(x)); return x.equals(x1); } private static boolean checkRef(Class type, Object x) { assert(!type.isPrimitive()); if (x == null) return true; if (type.isInterface()) return true; return type.isInstance(x); } /** If the invocation count hits the threshold we spin bytecodes and call that subsequently. */ private static final int COMPILE_THRESHOLD; static { COMPILE_THRESHOLD = Math.max(-1, MethodHandleStatics.COMPILE_THRESHOLD); } private int invocationCounter = 0; // a value of -1 indicates LambdaForm interpretation mode forever private boolean forceInterpretation() { return invocationCounter == -1; } @Hidden @DontInline /** Interpretively invoke this form on the given arguments. */ Object interpretWithArguments(Object... argumentValues) throws Throwable { if (TRACE_INTERPRETER) return interpretWithArgumentsTracing(argumentValues); checkInvocationCounter(); assert(arityCheck(argumentValues)); Object[] values = Arrays.copyOf(argumentValues, names.length); for (int i = argumentValues.length; i < values.length; i++) { values[i] = interpretName(names[i], values); } Object rv = (result < 0) ? null : values[result]; assert(resultCheck(argumentValues, rv)); return rv; } @Hidden @DontInline /** Evaluate a single Name within this form, applying its function to its arguments. */ Object interpretName(Name name, Object[] values) throws Throwable { if (TRACE_INTERPRETER) traceInterpreter("| interpretName", name.debugString(), (Object[]) null); Object[] arguments = Arrays.copyOf(name.arguments, name.arguments.length, Object[].class); for (int i = 0; i < arguments.length; i++) { Object a = arguments[i]; if (a instanceof Name) { int i2 = ((Name)a).index(); assert(names[i2] == a); a = values[i2]; arguments[i] = a; } } return name.function.invokeWithArguments(arguments); } private void checkInvocationCounter() { if (COMPILE_THRESHOLD != 0 && !forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) { invocationCounter++; // benign race if (invocationCounter >= COMPILE_THRESHOLD) { // Replace vmentry with a bytecode version of this LF. compileToBytecode(); } } } Object interpretWithArgumentsTracing(Object... argumentValues) throws Throwable { traceInterpreter("[ interpretWithArguments", this, argumentValues); if (!forceInterpretation() && invocationCounter < COMPILE_THRESHOLD) { int ctr = invocationCounter++; // benign race traceInterpreter("| invocationCounter", ctr); if (invocationCounter >= COMPILE_THRESHOLD) { compileToBytecode(); } } Object rval; try { assert(arityCheck(argumentValues)); Object[] values = Arrays.copyOf(argumentValues, names.length); for (int i = argumentValues.length; i < values.length; i++) { values[i] = interpretName(names[i], values); } rval = (result < 0) ? null : values[result]; } catch (Throwable ex) { traceInterpreter("] throw =>", ex); throw ex; } traceInterpreter("] return =>", rval); return rval; } static void traceInterpreter(String event, Object obj, Object... args) { if (TRACE_INTERPRETER) { System.out.println("LFI: "+event+" "+(obj != null ? obj : "")+(args != null && args.length != 0 ? Arrays.asList(args) : "")); } } static void traceInterpreter(String event, Object obj) { traceInterpreter(event, obj, (Object[])null); } private boolean arityCheck(Object[] argumentValues) { assert(argumentValues.length == arity) : arity+"!="+Arrays.asList(argumentValues)+".length"; // also check that the leading (receiver) argument is somehow bound to this LF: assert(argumentValues[0] instanceof MethodHandle) : "not MH: " + argumentValues[0]; MethodHandle mh = (MethodHandle) argumentValues[0]; assert(mh.internalForm() == this); // note: argument #0 could also be an interface wrapper, in the future argumentTypesMatch(basicTypeSignature(), argumentValues); return true; } private boolean resultCheck(Object[] argumentValues, Object result) { MethodHandle mh = (MethodHandle) argumentValues[0]; MethodType mt = mh.type(); assert(valueMatches(returnType(), mt.returnType(), result)); return true; } private boolean isEmpty() { if (result < 0) return (names.length == arity); else if (result == arity && names.length == arity + 1) return names[arity].isConstantZero(); else return false; } public String toString() { String lambdaName = lambdaName(); StringBuilder buf = new StringBuilder(lambdaName + "=Lambda("); for (int i = 0; i < names.length; i++) { if (i == arity) buf.append(")=>{"); Name n = names[i]; if (i >= arity) buf.append("\n "); buf.append(n.paramString()); if (i < arity) { if (i+1 < arity) buf.append(","); continue; } buf.append("=").append(n.exprString()); buf.append(";"); } if (arity == names.length) buf.append(")=>{"); buf.append(result < 0 ? "void" : names[result]).append("}"); if (TRACE_INTERPRETER) { // Extra verbosity: buf.append(":").append(basicTypeSignature()); buf.append("/").append(vmentry); } return buf.toString(); } @Override public boolean equals(Object obj) { return obj instanceof LambdaForm && equals((LambdaForm)obj); } public boolean equals(LambdaForm that) { if (this.result != that.result) return false; return Arrays.equals(this.names, that.names); } public int hashCode() { return result + 31 * Arrays.hashCode(names); } LambdaFormEditor editor() { return LambdaFormEditor.lambdaFormEditor(this); } boolean contains(Name name) { int pos = name.index(); if (pos >= 0) { return pos < names.length && name.equals(names[pos]); } for (int i = arity; i < names.length; i++) { if (name.equals(names[i])) return true; } return false; } static class NamedFunction { final MemberName member; private @Stable MethodHandle resolvedHandle; @Stable MethodHandle invoker; private final MethodHandleImpl.Intrinsic intrinsicName; NamedFunction(MethodHandle resolvedHandle) { this(resolvedHandle.internalMemberName(), resolvedHandle, MethodHandleImpl.Intrinsic.NONE); } NamedFunction(MethodHandle resolvedHandle, MethodHandleImpl.Intrinsic intrinsic) { this(resolvedHandle.internalMemberName(), resolvedHandle, intrinsic); } NamedFunction(MemberName member, MethodHandle resolvedHandle) { this(member, resolvedHandle, MethodHandleImpl.Intrinsic.NONE); } NamedFunction(MemberName member, MethodHandle resolvedHandle, MethodHandleImpl.Intrinsic intrinsic) { this.member = member; this.resolvedHandle = resolvedHandle; this.intrinsicName = intrinsic; assert(resolvedHandle == null || resolvedHandle.intrinsicName() == MethodHandleImpl.Intrinsic.NONE || resolvedHandle.intrinsicName() == intrinsic) : resolvedHandle.intrinsicName() + " != " + intrinsic; // The following assert is almost always correct, but will fail for corner cases, such as PrivateInvokeTest. //assert(!isInvokeBasic(member)); } NamedFunction(MethodType basicInvokerType) { assert(basicInvokerType == basicInvokerType.basicType()) : basicInvokerType; if (basicInvokerType.parameterSlotCount() < MethodType.MAX_MH_INVOKER_ARITY) { this.resolvedHandle = basicInvokerType.invokers().basicInvoker(); this.member = resolvedHandle.internalMemberName(); } else { // necessary to pass BigArityTest this.member = Invokers.invokeBasicMethod(basicInvokerType); } this.intrinsicName = MethodHandleImpl.Intrinsic.NONE; assert(isInvokeBasic(member)); } private static boolean isInvokeBasic(MemberName member) { return member != null && member.getDeclaringClass() == MethodHandle.class && "invokeBasic".equals(member.getName()); } // The next 2 constructors are used to break circular dependencies on MH.invokeStatic, etc. // Any LambdaForm containing such a member is not interpretable. // This is OK, since all such LFs are prepared with special primitive vmentry points. // And even without the resolvedHandle, the name can still be compiled and optimized. NamedFunction(Method method) { this(new MemberName(method)); } NamedFunction(MemberName member) { this(member, null); } MethodHandle resolvedHandle() { if (resolvedHandle == null) resolve(); return resolvedHandle; } synchronized void resolve() { if (resolvedHandle == null) { resolvedHandle = DirectMethodHandle.make(member); } } @Override public boolean equals(Object other) { if (this == other) return true; if (other == null) return false; if (!(other instanceof NamedFunction)) return false; NamedFunction that = (NamedFunction) other; return this.member != null && this.member.equals(that.member); } @Override public int hashCode() { if (member != null) return member.hashCode(); return super.hashCode(); } static final MethodType INVOKER_METHOD_TYPE = MethodType.methodType(Object.class, MethodHandle.class, Object[].class); private static MethodHandle computeInvoker(MethodTypeForm typeForm) { typeForm = typeForm.basicType().form(); // normalize to basic type MethodHandle mh = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV); if (mh != null) return mh; MemberName invoker = InvokerBytecodeGenerator.generateNamedFunctionInvoker(typeForm); // this could take a while mh = DirectMethodHandle.make(invoker); MethodHandle mh2 = typeForm.cachedMethodHandle(MethodTypeForm.MH_NF_INV); if (mh2 != null) return mh2; // benign race if (!mh.type().equals(INVOKER_METHOD_TYPE)) throw newInternalError(mh.debugString()); return typeForm.setCachedMethodHandle(MethodTypeForm.MH_NF_INV, mh); } @Hidden Object invokeWithArguments(Object... arguments) throws Throwable { // If we have a cached invoker, call it right away. // NOTE: The invoker always returns a reference value. if (TRACE_INTERPRETER) return invokeWithArgumentsTracing(arguments); return invoker().invokeBasic(resolvedHandle(), arguments); } @Hidden Object invokeWithArgumentsTracing(Object[] arguments) throws Throwable { Object rval; try { traceInterpreter("[ call", this, arguments); if (invoker == null) { traceInterpreter("| getInvoker", this); invoker(); } // resolvedHandle might be uninitialized, ok for tracing if (resolvedHandle == null) { traceInterpreter("| resolve", this); resolvedHandle(); } rval = invoker().invokeBasic(resolvedHandle(), arguments); } catch (Throwable ex) { traceInterpreter("] throw =>", ex); throw ex; } traceInterpreter("] return =>", rval); return rval; } private MethodHandle invoker() { if (invoker != null) return invoker; // Get an invoker and cache it. return invoker = computeInvoker(methodType().form()); } MethodType methodType() { if (resolvedHandle != null) return resolvedHandle.type(); else // only for certain internal LFs during bootstrapping return member.getInvocationType(); } MemberName member() { assert(assertMemberIsConsistent()); return member; } // Called only from assert. private boolean assertMemberIsConsistent() { if (resolvedHandle instanceof DirectMethodHandle) { MemberName m = resolvedHandle.internalMemberName(); assert(m.equals(member)); } return true; } Class memberDeclaringClassOrNull() { return (member == null) ? null : member.getDeclaringClass(); } BasicType returnType() { return basicType(methodType().returnType()); } BasicType parameterType(int n) { return basicType(methodType().parameterType(n)); } int arity() { return methodType().parameterCount(); } public String toString() { if (member == null) return String.valueOf(resolvedHandle); return member.getDeclaringClass().getSimpleName()+"."+member.getName(); } public boolean isIdentity() { return this.equals(identity(returnType())); } public boolean isConstantZero() { return this.equals(constantZero(returnType())); } public MethodHandleImpl.Intrinsic intrinsicName() { return intrinsicName; } } public static String basicTypeSignature(MethodType type) { int params = type.parameterCount(); char[] sig = new char[params + 2]; int sigp = 0; while (sigp < params) { sig[sigp] = basicTypeChar(type.parameterType(sigp++)); } sig[sigp++] = '_'; sig[sigp++] = basicTypeChar(type.returnType()); assert(sigp == sig.length); return String.valueOf(sig); } /** Hack to make signatures more readable when they show up in method names. * Signature should start with a sequence of uppercase ASCII letters. * Runs of three or more are replaced by a single letter plus a decimal repeat count. * A tail of anything other than uppercase ASCII is passed through unchanged. * @param signature sequence of uppercase ASCII letters with possible repetitions * @return same sequence, with repetitions counted by decimal numerals */ public static String shortenSignature(String signature) { final int NO_CHAR = -1, MIN_RUN = 3; int c0, c1 = NO_CHAR, c1reps = 0; StringBuilder buf = null; int len = signature.length(); if (len < MIN_RUN) return signature; for (int i = 0; i <= len; i++) { if (c1 != NO_CHAR && !('A' <= c1 && c1 <= 'Z')) { // wrong kind of char; bail out here if (buf != null) { buf.append(signature.substring(i - c1reps, len)); } break; } // shift in the next char: c0 = c1; c1 = (i == len ? NO_CHAR : signature.charAt(i)); if (c1 == c0) { ++c1reps; continue; } // shift in the next count: int c0reps = c1reps; c1reps = 1; // end of a character run if (c0reps < MIN_RUN) { if (buf != null) { while (--c0reps >= 0) buf.append((char)c0); } continue; } // found three or more in a row if (buf == null) buf = new StringBuilder().append(signature, 0, i - c0reps); buf.append((char)c0).append(c0reps); } return (buf == null) ? signature : buf.toString(); } static final class Name { final BasicType type; @Stable short index; final NamedFunction function; final Object constraint; // additional type information, if not null @Stable final Object[] arguments; private Name(int index, BasicType type, NamedFunction function, Object[] arguments) { this.index = (short)index; this.type = type; this.function = function; this.arguments = arguments; this.constraint = null; assert(this.index == index); } private Name(Name that, Object constraint) { this.index = that.index; this.type = that.type; this.function = that.function; this.arguments = that.arguments; this.constraint = constraint; assert(constraint == null || isParam()); // only params have constraints assert(constraint == null || constraint instanceof ClassSpecializer.SpeciesData || constraint instanceof Class); } Name(MethodHandle function, Object... arguments) { this(new NamedFunction(function), arguments); } Name(MethodType functionType, Object... arguments) { this(new NamedFunction(functionType), arguments); assert(arguments[0] instanceof Name && ((Name)arguments[0]).type == L_TYPE); } Name(MemberName function, Object... arguments) { this(new NamedFunction(function), arguments); } Name(NamedFunction function, Object... arguments) { this(-1, function.returnType(), function, arguments = Arrays.copyOf(arguments, arguments.length, Object[].class)); assert(typesMatch(function, arguments)); } /** Create a raw parameter of the given type, with an expected index. */ Name(int index, BasicType type) { this(index, type, null, null); } /** Create a raw parameter of the given type. */ Name(BasicType type) { this(-1, type); } BasicType type() { return type; } int index() { return index; } boolean initIndex(int i) { if (index != i) { if (index != -1) return false; index = (short)i; } return true; } char typeChar() { return type.btChar; } void resolve() { if (function != null) function.resolve(); } Name newIndex(int i) { if (initIndex(i)) return this; return cloneWithIndex(i); } Name cloneWithIndex(int i) { Object[] newArguments = (arguments == null) ? null : arguments.clone(); return new Name(i, type, function, newArguments).withConstraint(constraint); } Name withConstraint(Object constraint) { if (constraint == this.constraint) return this; return new Name(this, constraint); } Name replaceName(Name oldName, Name newName) { // FIXME: use replaceNames uniformly if (oldName == newName) return this; @SuppressWarnings("LocalVariableHidesMemberVariable") Object[] arguments = this.arguments; if (arguments == null) return this; boolean replaced = false; for (int j = 0; j < arguments.length; j++) { if (arguments[j] == oldName) { if (!replaced) { replaced = true; arguments = arguments.clone(); } arguments[j] = newName; } } if (!replaced) return this; return new Name(function, arguments); } /** In the arguments of this Name, replace oldNames[i] pairwise by newNames[i]. * Limit such replacements to {@code start<=i= end) return this; @SuppressWarnings("LocalVariableHidesMemberVariable") Object[] arguments = this.arguments; boolean replaced = false; eachArg: for (int j = 0; j < arguments.length; j++) { if (arguments[j] instanceof Name) { Name n = (Name) arguments[j]; int check = n.index; // harmless check to see if the thing is already in newNames: if (check >= 0 && check < newNames.length && n == newNames[check]) continue eachArg; // n might not have the correct index: n != oldNames[n.index]. for (int i = start; i < end; i++) { if (n == oldNames[i]) { if (n == newNames[i]) continue eachArg; if (!replaced) { replaced = true; arguments = arguments.clone(); } arguments[j] = newNames[i]; continue eachArg; } } } } if (!replaced) return this; return new Name(function, arguments); } void internArguments() { @SuppressWarnings("LocalVariableHidesMemberVariable") Object[] arguments = this.arguments; for (int j = 0; j < arguments.length; j++) { if (arguments[j] instanceof Name) { Name n = (Name) arguments[j]; if (n.isParam() && n.index < INTERNED_ARGUMENT_LIMIT) arguments[j] = internArgument(n); } } } boolean isParam() { return function == null; } boolean isConstantZero() { return !isParam() && arguments.length == 0 && function.isConstantZero(); } boolean refersTo(Class declaringClass, String methodName) { return function != null && function.member() != null && function.member().refersTo(declaringClass, methodName); } /** * Check if MemberName is a call to MethodHandle.invokeBasic. */ boolean isInvokeBasic() { if (function == null) return false; if (arguments.length < 1) return false; // must have MH argument MemberName member = function.member(); return member != null && member.refersTo(MethodHandle.class, "invokeBasic") && !member.isPublic() && !member.isStatic(); } /** * Check if MemberName is a call to MethodHandle.linkToStatic, etc. */ boolean isLinkerMethodInvoke() { if (function == null) return false; if (arguments.length < 1) return false; // must have MH argument MemberName member = function.member(); return member != null && member.getDeclaringClass() == MethodHandle.class && !member.isPublic() && member.isStatic() && member.getName().startsWith("linkTo"); } public String toString() { return (isParam()?"a":"t")+(index >= 0 ? index : System.identityHashCode(this))+":"+typeChar(); } public String debugString() { String s = paramString(); return (function == null) ? s : s + "=" + exprString(); } public String paramString() { String s = toString(); Object c = constraint; if (c == null) return s; if (c instanceof Class) c = ((Class)c).getSimpleName(); return s + "/" + c; } public String exprString() { if (function == null) return toString(); StringBuilder buf = new StringBuilder(function.toString()); buf.append("("); String cma = ""; for (Object a : arguments) { buf.append(cma); cma = ","; if (a instanceof Name || a instanceof Integer) buf.append(a); else buf.append("(").append(a).append(")"); } buf.append(")"); return buf.toString(); } private boolean typesMatch(NamedFunction function, Object ... arguments) { assert(arguments.length == function.arity()) : "arity mismatch: arguments.length=" + arguments.length + " == function.arity()=" + function.arity() + " in " + debugString(); for (int i = 0; i < arguments.length; i++) { assert (typesMatch(function.parameterType(i), arguments[i])) : "types don't match: function.parameterType(" + i + ")=" + function.parameterType(i) + ", arguments[" + i + "]=" + arguments[i] + " in " + debugString(); } return true; } private static boolean typesMatch(BasicType parameterType, Object object) { if (object instanceof Name) { return ((Name)object).type == parameterType; } switch (parameterType) { case I_TYPE: return object instanceof Integer; case J_TYPE: return object instanceof Long; case F_TYPE: return object instanceof Float; case D_TYPE: return object instanceof Double; } assert(parameterType == L_TYPE); return true; } /** Return the index of the last occurrence of n in the argument array. * Return -1 if the name is not used. */ int lastUseIndex(Name n) { if (arguments == null) return -1; for (int i = arguments.length; --i >= 0; ) { if (arguments[i] == n) return i; } return -1; } /** Return the number of occurrences of n in the argument array. * Return 0 if the name is not used. */ int useCount(Name n) { if (arguments == null) return 0; int count = 0; for (int i = arguments.length; --i >= 0; ) { if (arguments[i] == n) ++count; } return count; } boolean contains(Name n) { return this == n || lastUseIndex(n) >= 0; } public boolean equals(Name that) { if (this == that) return true; if (isParam()) // each parameter is a unique atom return false; // this != that return //this.index == that.index && this.type == that.type && this.function.equals(that.function) && Arrays.equals(this.arguments, that.arguments); } @Override public boolean equals(Object x) { return x instanceof Name && equals((Name)x); } @Override public int hashCode() { if (isParam()) return index | (type.ordinal() << 8); return function.hashCode() ^ Arrays.hashCode(arguments); } } /** Return the index of the last name which contains n as an argument. * Return -1 if the name is not used. Return names.length if it is the return value. */ int lastUseIndex(Name n) { int ni = n.index, nmax = names.length; assert(names[ni] == n); if (result == ni) return nmax; // live all the way beyond the end for (int i = nmax; --i > ni; ) { if (names[i].lastUseIndex(n) >= 0) return i; } return -1; } /** Return the number of times n is used as an argument or return value. */ int useCount(Name n) { int nmax = names.length; int end = lastUseIndex(n); if (end < 0) return 0; int count = 0; if (end == nmax) { count++; end--; } int beg = n.index() + 1; if (beg < arity) beg = arity; for (int i = beg; i <= end; i++) { count += names[i].useCount(n); } return count; } static Name argument(int which, BasicType type) { if (which >= INTERNED_ARGUMENT_LIMIT) return new Name(which, type); return INTERNED_ARGUMENTS[type.ordinal()][which]; } static Name internArgument(Name n) { assert(n.isParam()) : "not param: " + n; assert(n.index < INTERNED_ARGUMENT_LIMIT); if (n.constraint != null) return n; return argument(n.index, n.type); } static Name[] arguments(int extra, MethodType types) { int length = types.parameterCount(); Name[] names = new Name[length + extra]; for (int i = 0; i < length; i++) names[i] = argument(i, basicType(types.parameterType(i))); return names; } static final int INTERNED_ARGUMENT_LIMIT = 10; private static final Name[][] INTERNED_ARGUMENTS = new Name[ARG_TYPE_LIMIT][INTERNED_ARGUMENT_LIMIT]; static { for (BasicType type : BasicType.ARG_TYPES) { int ord = type.ordinal(); for (int i = 0; i < INTERNED_ARGUMENTS[ord].length; i++) { INTERNED_ARGUMENTS[ord][i] = new Name(i, type); } } } private static final MemberName.Factory IMPL_NAMES = MemberName.getFactory(); static LambdaForm identityForm(BasicType type) { int ord = type.ordinal(); LambdaForm form = LF_identity[ord]; if (form != null) { return form; } createFormsFor(type); return LF_identity[ord]; } static LambdaForm zeroForm(BasicType type) { int ord = type.ordinal(); LambdaForm form = LF_zero[ord]; if (form != null) { return form; } createFormsFor(type); return LF_zero[ord]; } static NamedFunction identity(BasicType type) { int ord = type.ordinal(); NamedFunction function = NF_identity[ord]; if (function != null) { return function; } createFormsFor(type); return NF_identity[ord]; } static NamedFunction constantZero(BasicType type) { int ord = type.ordinal(); NamedFunction function = NF_zero[ord]; if (function != null) { return function; } createFormsFor(type); return NF_zero[ord]; } private static final @Stable LambdaForm[] LF_identity = new LambdaForm[TYPE_LIMIT]; private static final @Stable LambdaForm[] LF_zero = new LambdaForm[TYPE_LIMIT]; private static final @Stable NamedFunction[] NF_identity = new NamedFunction[TYPE_LIMIT]; private static final @Stable NamedFunction[] NF_zero = new NamedFunction[TYPE_LIMIT]; private static final Object createFormsLock = new Object(); private static void createFormsFor(BasicType type) { // Avoid racy initialization during bootstrap UNSAFE.ensureClassInitialized(BoundMethodHandle.class); synchronized (createFormsLock) { final int ord = type.ordinal(); LambdaForm idForm = LF_identity[ord]; if (idForm != null) { return; } char btChar = type.basicTypeChar(); boolean isVoid = (type == V_TYPE); Class btClass = type.btClass; MethodType zeType = MethodType.methodType(btClass); MethodType idType = (isVoid) ? zeType : MethodType.methodType(btClass, btClass); // Look up symbolic names. It might not be necessary to have these, // but if we need to emit direct references to bytecodes, it helps. // Zero is built from a call to an identity function with a constant zero input. MemberName idMem = new MemberName(LambdaForm.class, "identity_"+btChar, idType, REF_invokeStatic); MemberName zeMem = null; try { idMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, idMem, null, NoSuchMethodException.class); if (!isVoid) { zeMem = new MemberName(LambdaForm.class, "zero_"+btChar, zeType, REF_invokeStatic); zeMem = IMPL_NAMES.resolveOrFail(REF_invokeStatic, zeMem, null, NoSuchMethodException.class); } } catch (IllegalAccessException|NoSuchMethodException ex) { throw newInternalError(ex); } NamedFunction idFun; LambdaForm zeForm; NamedFunction zeFun; // Create the LFs and NamedFunctions. Precompiling LFs to byte code is needed to break circular // bootstrap dependency on this method in case we're interpreting LFs if (isVoid) { Name[] idNames = new Name[] { argument(0, L_TYPE) }; idForm = new LambdaForm(1, idNames, VOID_RESULT, Kind.IDENTITY); idForm.compileToBytecode(); idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm)); zeForm = idForm; zeFun = idFun; } else { Name[] idNames = new Name[] { argument(0, L_TYPE), argument(1, type) }; idForm = new LambdaForm(2, idNames, 1, Kind.IDENTITY); idForm.compileToBytecode(); idFun = new NamedFunction(idMem, SimpleMethodHandle.make(idMem.getInvocationType(), idForm), MethodHandleImpl.Intrinsic.IDENTITY); Object zeValue = Wrapper.forBasicType(btChar).zero(); Name[] zeNames = new Name[] { argument(0, L_TYPE), new Name(idFun, zeValue) }; zeForm = new LambdaForm(1, zeNames, 1, Kind.ZERO); zeForm.compileToBytecode(); zeFun = new NamedFunction(zeMem, SimpleMethodHandle.make(zeMem.getInvocationType(), zeForm), MethodHandleImpl.Intrinsic.ZERO); } LF_zero[ord] = zeForm; NF_zero[ord] = zeFun; LF_identity[ord] = idForm; NF_identity[ord] = idFun; assert(idFun.isIdentity()); assert(zeFun.isConstantZero()); assert(new Name(zeFun).isConstantZero()); } } // Avoid appealing to ValueConversions at bootstrap time: private static int identity_I(int x) { return x; } private static long identity_J(long x) { return x; } private static float identity_F(float x) { return x; } private static double identity_D(double x) { return x; } private static Object identity_L(Object x) { return x; } private static void identity_V() { return; } private static int zero_I() { return 0; } private static long zero_J() { return 0; } private static float zero_F() { return 0; } private static double zero_D() { return 0; } private static Object zero_L() { return null; } /** * Internal marker for byte-compiled LambdaForms. */ /*non-public*/ @Target(ElementType.METHOD) @Retention(RetentionPolicy.RUNTIME) @interface Compiled { } /** * Internal marker for LambdaForm interpreter frames. */ /*non-public*/ @Target(ElementType.METHOD) @Retention(RetentionPolicy.RUNTIME) @interface Hidden { } private static final HashMap DEBUG_NAME_COUNTERS; private static final HashMap DEBUG_NAMES; static { if (debugEnabled()) { DEBUG_NAME_COUNTERS = new HashMap<>(); DEBUG_NAMES = new HashMap<>(); } else { DEBUG_NAME_COUNTERS = null; DEBUG_NAMES = null; } } static { // The Holder class will contain pre-generated forms resolved // using MemberName.getFactory(). However, that doesn't initialize the // class, which subtly breaks inlining etc. By forcing // initialization of the Holder class we avoid these issues. UNSAFE.ensureClassInitialized(Holder.class); } /* Placeholder class for zero and identity forms generated ahead of time */ final class Holder {} // The following hack is necessary in order to suppress TRACE_INTERPRETER // during execution of the static initializes of this class. // Turning on TRACE_INTERPRETER too early will cause // stack overflows and other misbehavior during attempts to trace events // that occur during LambdaForm.. // Therefore, do not move this line higher in this file, and do not remove. private static final boolean TRACE_INTERPRETER = MethodHandleStatics.TRACE_INTERPRETER; }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy