All Downloads are FREE. Search and download functionalities are using the official Maven repository.

META-INF.modules.java.base.classes.java.math.MutableBigInteger Maven / Gradle / Ivy

There is a newer version: 2024-05-10
Show newest version
/*
 * Copyright (c) 1999, 2015, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package java.math;

/**
 * A class used to represent multiprecision integers that makes efficient
 * use of allocated space by allowing a number to occupy only part of
 * an array so that the arrays do not have to be reallocated as often.
 * When performing an operation with many iterations the array used to
 * hold a number is only reallocated when necessary and does not have to
 * be the same size as the number it represents. A mutable number allows
 * calculations to occur on the same number without having to create
 * a new number for every step of the calculation as occurs with
 * BigIntegers.
 *
 * @see     BigInteger
 * @author  Michael McCloskey
 * @author  Timothy Buktu
 * @since   1.3
 */

import static java.math.BigDecimal.INFLATED;
import static java.math.BigInteger.LONG_MASK;
import java.util.Arrays;

class MutableBigInteger {
    /**
     * Holds the magnitude of this MutableBigInteger in big endian order.
     * The magnitude may start at an offset into the value array, and it may
     * end before the length of the value array.
     */
    int[] value;

    /**
     * The number of ints of the value array that are currently used
     * to hold the magnitude of this MutableBigInteger. The magnitude starts
     * at an offset and offset + intLen may be less than value.length.
     */
    int intLen;

    /**
     * The offset into the value array where the magnitude of this
     * MutableBigInteger begins.
     */
    int offset = 0;

    // Constants
    /**
     * MutableBigInteger with one element value array with the value 1. Used by
     * BigDecimal divideAndRound to increment the quotient. Use this constant
     * only when the method is not going to modify this object.
     */
    static final MutableBigInteger ONE = new MutableBigInteger(1);

    /**
     * The minimum {@code intLen} for cancelling powers of two before
     * dividing.
     * If the number of ints is less than this threshold,
     * {@code divideKnuth} does not eliminate common powers of two from
     * the dividend and divisor.
     */
    static final int KNUTH_POW2_THRESH_LEN = 6;

    /**
     * The minimum number of trailing zero ints for cancelling powers of two
     * before dividing.
     * If the dividend and divisor don't share at least this many zero ints
     * at the end, {@code divideKnuth} does not eliminate common powers
     * of two from the dividend and divisor.
     */
    static final int KNUTH_POW2_THRESH_ZEROS = 3;

    // Constructors

    /**
     * The default constructor. An empty MutableBigInteger is created with
     * a one word capacity.
     */
    MutableBigInteger() {
        value = new int[1];
        intLen = 0;
    }

    /**
     * Construct a new MutableBigInteger with a magnitude specified by
     * the int val.
     */
    MutableBigInteger(int val) {
        value = new int[1];
        intLen = 1;
        value[0] = val;
    }

    /**
     * Construct a new MutableBigInteger with the specified value array
     * up to the length of the array supplied.
     */
    MutableBigInteger(int[] val) {
        value = val;
        intLen = val.length;
    }

    /**
     * Construct a new MutableBigInteger with a magnitude equal to the
     * specified BigInteger.
     */
    MutableBigInteger(BigInteger b) {
        intLen = b.mag.length;
        value = Arrays.copyOf(b.mag, intLen);
    }

    /**
     * Construct a new MutableBigInteger with a magnitude equal to the
     * specified MutableBigInteger.
     */
    MutableBigInteger(MutableBigInteger val) {
        intLen = val.intLen;
        value = Arrays.copyOfRange(val.value, val.offset, val.offset + intLen);
    }

    /**
     * Makes this number an {@code n}-int number all of whose bits are ones.
     * Used by Burnikel-Ziegler division.
     * @param n number of ints in the {@code value} array
     * @return a number equal to {@code ((1<<(32*n)))-1}
     */
    private void ones(int n) {
        if (n > value.length)
            value = new int[n];
        Arrays.fill(value, -1);
        offset = 0;
        intLen = n;
    }

    /**
     * Internal helper method to return the magnitude array. The caller is not
     * supposed to modify the returned array.
     */
    private int[] getMagnitudeArray() {
        if (offset > 0 || value.length != intLen)
            return Arrays.copyOfRange(value, offset, offset + intLen);
        return value;
    }

    /**
     * Convert this MutableBigInteger to a long value. The caller has to make
     * sure this MutableBigInteger can be fit into long.
     */
    private long toLong() {
        assert (intLen <= 2) : "this MutableBigInteger exceeds the range of long";
        if (intLen == 0)
            return 0;
        long d = value[offset] & LONG_MASK;
        return (intLen == 2) ? d << 32 | (value[offset + 1] & LONG_MASK) : d;
    }

    /**
     * Convert this MutableBigInteger to a BigInteger object.
     */
    BigInteger toBigInteger(int sign) {
        if (intLen == 0 || sign == 0)
            return BigInteger.ZERO;
        return new BigInteger(getMagnitudeArray(), sign);
    }

    /**
     * Converts this number to a nonnegative {@code BigInteger}.
     */
    BigInteger toBigInteger() {
        normalize();
        return toBigInteger(isZero() ? 0 : 1);
    }

    /**
     * Convert this MutableBigInteger to BigDecimal object with the specified sign
     * and scale.
     */
    BigDecimal toBigDecimal(int sign, int scale) {
        if (intLen == 0 || sign == 0)
            return BigDecimal.zeroValueOf(scale);
        int[] mag = getMagnitudeArray();
        int len = mag.length;
        int d = mag[0];
        // If this MutableBigInteger can't be fit into long, we need to
        // make a BigInteger object for the resultant BigDecimal object.
        if (len > 2 || (d < 0 && len == 2))
            return new BigDecimal(new BigInteger(mag, sign), INFLATED, scale, 0);
        long v = (len == 2) ?
            ((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) :
            d & LONG_MASK;
        return BigDecimal.valueOf(sign == -1 ? -v : v, scale);
    }

    /**
     * This is for internal use in converting from a MutableBigInteger
     * object into a long value given a specified sign.
     * returns INFLATED if value is not fit into long
     */
    long toCompactValue(int sign) {
        if (intLen == 0 || sign == 0)
            return 0L;
        int[] mag = getMagnitudeArray();
        int len = mag.length;
        int d = mag[0];
        // If this MutableBigInteger can not be fitted into long, we need to
        // make a BigInteger object for the resultant BigDecimal object.
        if (len > 2 || (d < 0 && len == 2))
            return INFLATED;
        long v = (len == 2) ?
            ((mag[1] & LONG_MASK) | (d & LONG_MASK) << 32) :
            d & LONG_MASK;
        return sign == -1 ? -v : v;
    }

    /**
     * Clear out a MutableBigInteger for reuse.
     */
    void clear() {
        offset = intLen = 0;
        for (int index=0, n=value.length; index < n; index++)
            value[index] = 0;
    }

    /**
     * Set a MutableBigInteger to zero, removing its offset.
     */
    void reset() {
        offset = intLen = 0;
    }

    /**
     * Compare the magnitude of two MutableBigIntegers. Returns -1, 0 or 1
     * as this MutableBigInteger is numerically less than, equal to, or
     * greater than {@code b}.
     */
    final int compare(MutableBigInteger b) {
        int blen = b.intLen;
        if (intLen < blen)
            return -1;
        if (intLen > blen)
           return 1;

        // Add Integer.MIN_VALUE to make the comparison act as unsigned integer
        // comparison.
        int[] bval = b.value;
        for (int i = offset, j = b.offset; i < intLen + offset; i++, j++) {
            int b1 = value[i] + 0x80000000;
            int b2 = bval[j]  + 0x80000000;
            if (b1 < b2)
                return -1;
            if (b1 > b2)
                return 1;
        }
        return 0;
    }

    /**
     * Returns a value equal to what {@code b.leftShift(32*ints); return compare(b);}
     * would return, but doesn't change the value of {@code b}.
     */
    private int compareShifted(MutableBigInteger b, int ints) {
        int blen = b.intLen;
        int alen = intLen - ints;
        if (alen < blen)
            return -1;
        if (alen > blen)
           return 1;

        // Add Integer.MIN_VALUE to make the comparison act as unsigned integer
        // comparison.
        int[] bval = b.value;
        for (int i = offset, j = b.offset; i < alen + offset; i++, j++) {
            int b1 = value[i] + 0x80000000;
            int b2 = bval[j]  + 0x80000000;
            if (b1 < b2)
                return -1;
            if (b1 > b2)
                return 1;
        }
        return 0;
    }

    /**
     * Compare this against half of a MutableBigInteger object (Needed for
     * remainder tests).
     * Assumes no leading unnecessary zeros, which holds for results
     * from divide().
     */
    final int compareHalf(MutableBigInteger b) {
        int blen = b.intLen;
        int len = intLen;
        if (len <= 0)
            return blen <= 0 ? 0 : -1;
        if (len > blen)
            return 1;
        if (len < blen - 1)
            return -1;
        int[] bval = b.value;
        int bstart = 0;
        int carry = 0;
        // Only 2 cases left:len == blen or len == blen - 1
        if (len != blen) { // len == blen - 1
            if (bval[bstart] == 1) {
                ++bstart;
                carry = 0x80000000;
            } else
                return -1;
        }
        // compare values with right-shifted values of b,
        // carrying shifted-out bits across words
        int[] val = value;
        for (int i = offset, j = bstart; i < len + offset;) {
            int bv = bval[j++];
            long hb = ((bv >>> 1) + carry) & LONG_MASK;
            long v = val[i++] & LONG_MASK;
            if (v != hb)
                return v < hb ? -1 : 1;
            carry = (bv & 1) << 31; // carray will be either 0x80000000 or 0
        }
        return carry == 0 ? 0 : -1;
    }

    /**
     * Return the index of the lowest set bit in this MutableBigInteger. If the
     * magnitude of this MutableBigInteger is zero, -1 is returned.
     */
    private final int getLowestSetBit() {
        if (intLen == 0)
            return -1;
        int j, b;
        for (j=intLen-1; (j > 0) && (value[j+offset] == 0); j--)
            ;
        b = value[j+offset];
        if (b == 0)
            return -1;
        return ((intLen-1-j)<<5) + Integer.numberOfTrailingZeros(b);
    }

    /**
     * Return the int in use in this MutableBigInteger at the specified
     * index. This method is not used because it is not inlined on all
     * platforms.
     */
    private final int getInt(int index) {
        return value[offset+index];
    }

    /**
     * Return a long which is equal to the unsigned value of the int in
     * use in this MutableBigInteger at the specified index. This method is
     * not used because it is not inlined on all platforms.
     */
    private final long getLong(int index) {
        return value[offset+index] & LONG_MASK;
    }

    /**
     * Ensure that the MutableBigInteger is in normal form, specifically
     * making sure that there are no leading zeros, and that if the
     * magnitude is zero, then intLen is zero.
     */
    final void normalize() {
        if (intLen == 0) {
            offset = 0;
            return;
        }

        int index = offset;
        if (value[index] != 0)
            return;

        int indexBound = index+intLen;
        do {
            index++;
        } while(index < indexBound && value[index] == 0);

        int numZeros = index - offset;
        intLen -= numZeros;
        offset = (intLen == 0 ?  0 : offset+numZeros);
    }

    /**
     * If this MutableBigInteger cannot hold len words, increase the size
     * of the value array to len words.
     */
    private final void ensureCapacity(int len) {
        if (value.length < len) {
            value = new int[len];
            offset = 0;
            intLen = len;
        }
    }

    /**
     * Convert this MutableBigInteger into an int array with no leading
     * zeros, of a length that is equal to this MutableBigInteger's intLen.
     */
    int[] toIntArray() {
        int[] result = new int[intLen];
        for(int i=0; i < intLen; i++)
            result[i] = value[offset+i];
        return result;
    }

    /**
     * Sets the int at index+offset in this MutableBigInteger to val.
     * This does not get inlined on all platforms so it is not used
     * as often as originally intended.
     */
    void setInt(int index, int val) {
        value[offset + index] = val;
    }

    /**
     * Sets this MutableBigInteger's value array to the specified array.
     * The intLen is set to the specified length.
     */
    void setValue(int[] val, int length) {
        value = val;
        intLen = length;
        offset = 0;
    }

    /**
     * Sets this MutableBigInteger's value array to a copy of the specified
     * array. The intLen is set to the length of the new array.
     */
    void copyValue(MutableBigInteger src) {
        int len = src.intLen;
        if (value.length < len)
            value = new int[len];
        System.arraycopy(src.value, src.offset, value, 0, len);
        intLen = len;
        offset = 0;
    }

    /**
     * Sets this MutableBigInteger's value array to a copy of the specified
     * array. The intLen is set to the length of the specified array.
     */
    void copyValue(int[] val) {
        int len = val.length;
        if (value.length < len)
            value = new int[len];
        System.arraycopy(val, 0, value, 0, len);
        intLen = len;
        offset = 0;
    }

    /**
     * Returns true iff this MutableBigInteger has a value of one.
     */
    boolean isOne() {
        return (intLen == 1) && (value[offset] == 1);
    }

    /**
     * Returns true iff this MutableBigInteger has a value of zero.
     */
    boolean isZero() {
        return (intLen == 0);
    }

    /**
     * Returns true iff this MutableBigInteger is even.
     */
    boolean isEven() {
        return (intLen == 0) || ((value[offset + intLen - 1] & 1) == 0);
    }

    /**
     * Returns true iff this MutableBigInteger is odd.
     */
    boolean isOdd() {
        return isZero() ? false : ((value[offset + intLen - 1] & 1) == 1);
    }

    /**
     * Returns true iff this MutableBigInteger is in normal form. A
     * MutableBigInteger is in normal form if it has no leading zeros
     * after the offset, and intLen + offset <= value.length.
     */
    boolean isNormal() {
        if (intLen + offset > value.length)
            return false;
        if (intLen == 0)
            return true;
        return (value[offset] != 0);
    }

    /**
     * Returns a String representation of this MutableBigInteger in radix 10.
     */
    public String toString() {
        BigInteger b = toBigInteger(1);
        return b.toString();
    }

    /**
     * Like {@link #rightShift(int)} but {@code n} can be greater than the length of the number.
     */
    void safeRightShift(int n) {
        if (n/32 >= intLen) {
            reset();
        } else {
            rightShift(n);
        }
    }

    /**
     * Right shift this MutableBigInteger n bits. The MutableBigInteger is left
     * in normal form.
     */
    void rightShift(int n) {
        if (intLen == 0)
            return;
        int nInts = n >>> 5;
        int nBits = n & 0x1F;
        this.intLen -= nInts;
        if (nBits == 0)
            return;
        int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]);
        if (nBits >= bitsInHighWord) {
            this.primitiveLeftShift(32 - nBits);
            this.intLen--;
        } else {
            primitiveRightShift(nBits);
        }
    }

    /**
     * Like {@link #leftShift(int)} but {@code n} can be zero.
     */
    void safeLeftShift(int n) {
        if (n > 0) {
            leftShift(n);
        }
    }

    /**
     * Left shift this MutableBigInteger n bits.
     */
    void leftShift(int n) {
        /*
         * If there is enough storage space in this MutableBigInteger already
         * the available space will be used. Space to the right of the used
         * ints in the value array is faster to utilize, so the extra space
         * will be taken from the right if possible.
         */
        if (intLen == 0)
           return;
        int nInts = n >>> 5;
        int nBits = n&0x1F;
        int bitsInHighWord = BigInteger.bitLengthForInt(value[offset]);

        // If shift can be done without moving words, do so
        if (n <= (32-bitsInHighWord)) {
            primitiveLeftShift(nBits);
            return;
        }

        int newLen = intLen + nInts +1;
        if (nBits <= (32-bitsInHighWord))
            newLen--;
        if (value.length < newLen) {
            // The array must grow
            int[] result = new int[newLen];
            for (int i=0; i < intLen; i++)
                result[i] = value[offset+i];
            setValue(result, newLen);
        } else if (value.length - offset >= newLen) {
            // Use space on right
            for(int i=0; i < newLen - intLen; i++)
                value[offset+intLen+i] = 0;
        } else {
            // Must use space on left
            for (int i=0; i < intLen; i++)
                value[i] = value[offset+i];
            for (int i=intLen; i < newLen; i++)
                value[i] = 0;
            offset = 0;
        }
        intLen = newLen;
        if (nBits == 0)
            return;
        if (nBits <= (32-bitsInHighWord))
            primitiveLeftShift(nBits);
        else
            primitiveRightShift(32 -nBits);
    }

    /**
     * A primitive used for division. This method adds in one multiple of the
     * divisor a back to the dividend result at a specified offset. It is used
     * when qhat was estimated too large, and must be adjusted.
     */
    private int divadd(int[] a, int[] result, int offset) {
        long carry = 0;

        for (int j=a.length-1; j >= 0; j--) {
            long sum = (a[j] & LONG_MASK) +
                       (result[j+offset] & LONG_MASK) + carry;
            result[j+offset] = (int)sum;
            carry = sum >>> 32;
        }
        return (int)carry;
    }

    /**
     * This method is used for division. It multiplies an n word input a by one
     * word input x, and subtracts the n word product from q. This is needed
     * when subtracting qhat*divisor from dividend.
     */
    private int mulsub(int[] q, int[] a, int x, int len, int offset) {
        long xLong = x & LONG_MASK;
        long carry = 0;
        offset += len;

        for (int j=len-1; j >= 0; j--) {
            long product = (a[j] & LONG_MASK) * xLong + carry;
            long difference = q[offset] - product;
            q[offset--] = (int)difference;
            carry = (product >>> 32)
                     + (((difference & LONG_MASK) >
                         (((~(int)product) & LONG_MASK))) ? 1:0);
        }
        return (int)carry;
    }

    /**
     * The method is the same as mulsun, except the fact that q array is not
     * updated, the only result of the method is borrow flag.
     */
    private int mulsubBorrow(int[] q, int[] a, int x, int len, int offset) {
        long xLong = x & LONG_MASK;
        long carry = 0;
        offset += len;
        for (int j=len-1; j >= 0; j--) {
            long product = (a[j] & LONG_MASK) * xLong + carry;
            long difference = q[offset--] - product;
            carry = (product >>> 32)
                     + (((difference & LONG_MASK) >
                         (((~(int)product) & LONG_MASK))) ? 1:0);
        }
        return (int)carry;
    }

    /**
     * Right shift this MutableBigInteger n bits, where n is
     * less than 32.
     * Assumes that intLen > 0, n > 0 for speed
     */
    private final void primitiveRightShift(int n) {
        int[] val = value;
        int n2 = 32 - n;
        for (int i=offset+intLen-1, c=val[i]; i > offset; i--) {
            int b = c;
            c = val[i-1];
            val[i] = (c << n2) | (b >>> n);
        }
        val[offset] >>>= n;
    }

    /**
     * Left shift this MutableBigInteger n bits, where n is
     * less than 32.
     * Assumes that intLen > 0, n > 0 for speed
     */
    private final void primitiveLeftShift(int n) {
        int[] val = value;
        int n2 = 32 - n;
        for (int i=offset, c=val[i], m=i+intLen-1; i < m; i++) {
            int b = c;
            c = val[i+1];
            val[i] = (b << n) | (c >>> n2);
        }
        val[offset+intLen-1] <<= n;
    }

    /**
     * Returns a {@code BigInteger} equal to the {@code n}
     * low ints of this number.
     */
    private BigInteger getLower(int n) {
        if (isZero()) {
            return BigInteger.ZERO;
        } else if (intLen < n) {
            return toBigInteger(1);
        } else {
            // strip zeros
            int len = n;
            while (len > 0 && value[offset+intLen-len] == 0)
                len--;
            int sign = len > 0 ? 1 : 0;
            return new BigInteger(Arrays.copyOfRange(value, offset+intLen-len, offset+intLen), sign);
        }
    }

    /**
     * Discards all ints whose index is greater than {@code n}.
     */
    private void keepLower(int n) {
        if (intLen >= n) {
            offset += intLen - n;
            intLen = n;
        }
    }

    /**
     * Adds the contents of two MutableBigInteger objects.The result
     * is placed within this MutableBigInteger.
     * The contents of the addend are not changed.
     */
    void add(MutableBigInteger addend) {
        int x = intLen;
        int y = addend.intLen;
        int resultLen = (intLen > addend.intLen ? intLen : addend.intLen);
        int[] result = (value.length < resultLen ? new int[resultLen] : value);

        int rstart = result.length-1;
        long sum;
        long carry = 0;

        // Add common parts of both numbers
        while(x > 0 && y > 0) {
            x--; y--;
            sum = (value[x+offset] & LONG_MASK) +
                (addend.value[y+addend.offset] & LONG_MASK) + carry;
            result[rstart--] = (int)sum;
            carry = sum >>> 32;
        }

        // Add remainder of the longer number
        while(x > 0) {
            x--;
            if (carry == 0 && result == value && rstart == (x + offset))
                return;
            sum = (value[x+offset] & LONG_MASK) + carry;
            result[rstart--] = (int)sum;
            carry = sum >>> 32;
        }
        while(y > 0) {
            y--;
            sum = (addend.value[y+addend.offset] & LONG_MASK) + carry;
            result[rstart--] = (int)sum;
            carry = sum >>> 32;
        }

        if (carry > 0) { // Result must grow in length
            resultLen++;
            if (result.length < resultLen) {
                int temp[] = new int[resultLen];
                // Result one word longer from carry-out; copy low-order
                // bits into new result.
                System.arraycopy(result, 0, temp, 1, result.length);
                temp[0] = 1;
                result = temp;
            } else {
                result[rstart--] = 1;
            }
        }

        value = result;
        intLen = resultLen;
        offset = result.length - resultLen;
    }

    /**
     * Adds the value of {@code addend} shifted {@code n} ints to the left.
     * Has the same effect as {@code addend.leftShift(32*ints); add(addend);}
     * but doesn't change the value of {@code addend}.
     */
    void addShifted(MutableBigInteger addend, int n) {
        if (addend.isZero()) {
            return;
        }

        int x = intLen;
        int y = addend.intLen + n;
        int resultLen = (intLen > y ? intLen : y);
        int[] result = (value.length < resultLen ? new int[resultLen] : value);

        int rstart = result.length-1;
        long sum;
        long carry = 0;

        // Add common parts of both numbers
        while (x > 0 && y > 0) {
            x--; y--;
            int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
            sum = (value[x+offset] & LONG_MASK) +
                (bval & LONG_MASK) + carry;
            result[rstart--] = (int)sum;
            carry = sum >>> 32;
        }

        // Add remainder of the longer number
        while (x > 0) {
            x--;
            if (carry == 0 && result == value && rstart == (x + offset)) {
                return;
            }
            sum = (value[x+offset] & LONG_MASK) + carry;
            result[rstart--] = (int)sum;
            carry = sum >>> 32;
        }
        while (y > 0) {
            y--;
            int bval = y+addend.offset < addend.value.length ? addend.value[y+addend.offset] : 0;
            sum = (bval & LONG_MASK) + carry;
            result[rstart--] = (int)sum;
            carry = sum >>> 32;
        }

        if (carry > 0) { // Result must grow in length
            resultLen++;
            if (result.length < resultLen) {
                int temp[] = new int[resultLen];
                // Result one word longer from carry-out; copy low-order
                // bits into new result.
                System.arraycopy(result, 0, temp, 1, result.length);
                temp[0] = 1;
                result = temp;
            } else {
                result[rstart--] = 1;
            }
        }

        value = result;
        intLen = resultLen;
        offset = result.length - resultLen;
    }

    /**
     * Like {@link #addShifted(MutableBigInteger, int)} but {@code this.intLen} must
     * not be greater than {@code n}. In other words, concatenates {@code this}
     * and {@code addend}.
     */
    void addDisjoint(MutableBigInteger addend, int n) {
        if (addend.isZero())
            return;

        int x = intLen;
        int y = addend.intLen + n;
        int resultLen = (intLen > y ? intLen : y);
        int[] result;
        if (value.length < resultLen)
            result = new int[resultLen];
        else {
            result = value;
            Arrays.fill(value, offset+intLen, value.length, 0);
        }

        int rstart = result.length-1;

        // copy from this if needed
        System.arraycopy(value, offset, result, rstart+1-x, x);
        y -= x;
        rstart -= x;

        int len = Math.min(y, addend.value.length-addend.offset);
        System.arraycopy(addend.value, addend.offset, result, rstart+1-y, len);

        // zero the gap
        for (int i=rstart+1-y+len; i < rstart+1; i++)
            result[i] = 0;

        value = result;
        intLen = resultLen;
        offset = result.length - resultLen;
    }

    /**
     * Adds the low {@code n} ints of {@code addend}.
     */
    void addLower(MutableBigInteger addend, int n) {
        MutableBigInteger a = new MutableBigInteger(addend);
        if (a.offset + a.intLen >= n) {
            a.offset = a.offset + a.intLen - n;
            a.intLen = n;
        }
        a.normalize();
        add(a);
    }

    /**
     * Subtracts the smaller of this and b from the larger and places the
     * result into this MutableBigInteger.
     */
    int subtract(MutableBigInteger b) {
        MutableBigInteger a = this;

        int[] result = value;
        int sign = a.compare(b);

        if (sign == 0) {
            reset();
            return 0;
        }
        if (sign < 0) {
            MutableBigInteger tmp = a;
            a = b;
            b = tmp;
        }

        int resultLen = a.intLen;
        if (result.length < resultLen)
            result = new int[resultLen];

        long diff = 0;
        int x = a.intLen;
        int y = b.intLen;
        int rstart = result.length - 1;

        // Subtract common parts of both numbers
        while (y > 0) {
            x--; y--;

            diff = (a.value[x+a.offset] & LONG_MASK) -
                   (b.value[y+b.offset] & LONG_MASK) - ((int)-(diff>>32));
            result[rstart--] = (int)diff;
        }
        // Subtract remainder of longer number
        while (x > 0) {
            x--;
            diff = (a.value[x+a.offset] & LONG_MASK) - ((int)-(diff>>32));
            result[rstart--] = (int)diff;
        }

        value = result;
        intLen = resultLen;
        offset = value.length - resultLen;
        normalize();
        return sign;
    }

    /**
     * Subtracts the smaller of a and b from the larger and places the result
     * into the larger. Returns 1 if the answer is in a, -1 if in b, 0 if no
     * operation was performed.
     */
    private int difference(MutableBigInteger b) {
        MutableBigInteger a = this;
        int sign = a.compare(b);
        if (sign == 0)
            return 0;
        if (sign < 0) {
            MutableBigInteger tmp = a;
            a = b;
            b = tmp;
        }

        long diff = 0;
        int x = a.intLen;
        int y = b.intLen;

        // Subtract common parts of both numbers
        while (y > 0) {
            x--; y--;
            diff = (a.value[a.offset+ x] & LONG_MASK) -
                (b.value[b.offset+ y] & LONG_MASK) - ((int)-(diff>>32));
            a.value[a.offset+x] = (int)diff;
        }
        // Subtract remainder of longer number
        while (x > 0) {
            x--;
            diff = (a.value[a.offset+ x] & LONG_MASK) - ((int)-(diff>>32));
            a.value[a.offset+x] = (int)diff;
        }

        a.normalize();
        return sign;
    }

    /**
     * Multiply the contents of two MutableBigInteger objects. The result is
     * placed into MutableBigInteger z. The contents of y are not changed.
     */
    void multiply(MutableBigInteger y, MutableBigInteger z) {
        int xLen = intLen;
        int yLen = y.intLen;
        int newLen = xLen + yLen;

        // Put z into an appropriate state to receive product
        if (z.value.length < newLen)
            z.value = new int[newLen];
        z.offset = 0;
        z.intLen = newLen;

        // The first iteration is hoisted out of the loop to avoid extra add
        long carry = 0;
        for (int j=yLen-1, k=yLen+xLen-1; j >= 0; j--, k--) {
                long product = (y.value[j+y.offset] & LONG_MASK) *
                               (value[xLen-1+offset] & LONG_MASK) + carry;
                z.value[k] = (int)product;
                carry = product >>> 32;
        }
        z.value[xLen-1] = (int)carry;

        // Perform the multiplication word by word
        for (int i = xLen-2; i >= 0; i--) {
            carry = 0;
            for (int j=yLen-1, k=yLen+i; j >= 0; j--, k--) {
                long product = (y.value[j+y.offset] & LONG_MASK) *
                               (value[i+offset] & LONG_MASK) +
                               (z.value[k] & LONG_MASK) + carry;
                z.value[k] = (int)product;
                carry = product >>> 32;
            }
            z.value[i] = (int)carry;
        }

        // Remove leading zeros from product
        z.normalize();
    }

    /**
     * Multiply the contents of this MutableBigInteger by the word y. The
     * result is placed into z.
     */
    void mul(int y, MutableBigInteger z) {
        if (y == 1) {
            z.copyValue(this);
            return;
        }

        if (y == 0) {
            z.clear();
            return;
        }

        // Perform the multiplication word by word
        long ylong = y & LONG_MASK;
        int[] zval = (z.value.length < intLen+1 ? new int[intLen + 1]
                                              : z.value);
        long carry = 0;
        for (int i = intLen-1; i >= 0; i--) {
            long product = ylong * (value[i+offset] & LONG_MASK) + carry;
            zval[i+1] = (int)product;
            carry = product >>> 32;
        }

        if (carry == 0) {
            z.offset = 1;
            z.intLen = intLen;
        } else {
            z.offset = 0;
            z.intLen = intLen + 1;
            zval[0] = (int)carry;
        }
        z.value = zval;
    }

     /**
     * This method is used for division of an n word dividend by a one word
     * divisor. The quotient is placed into quotient. The one word divisor is
     * specified by divisor.
     *
     * @return the remainder of the division is returned.
     *
     */
    int divideOneWord(int divisor, MutableBigInteger quotient) {
        long divisorLong = divisor & LONG_MASK;

        // Special case of one word dividend
        if (intLen == 1) {
            long dividendValue = value[offset] & LONG_MASK;
            int q = (int) (dividendValue / divisorLong);
            int r = (int) (dividendValue - q * divisorLong);
            quotient.value[0] = q;
            quotient.intLen = (q == 0) ? 0 : 1;
            quotient.offset = 0;
            return r;
        }

        if (quotient.value.length < intLen)
            quotient.value = new int[intLen];
        quotient.offset = 0;
        quotient.intLen = intLen;

        // Normalize the divisor
        int shift = Integer.numberOfLeadingZeros(divisor);

        int rem = value[offset];
        long remLong = rem & LONG_MASK;
        if (remLong < divisorLong) {
            quotient.value[0] = 0;
        } else {
            quotient.value[0] = (int)(remLong / divisorLong);
            rem = (int) (remLong - (quotient.value[0] * divisorLong));
            remLong = rem & LONG_MASK;
        }
        int xlen = intLen;
        while (--xlen > 0) {
            long dividendEstimate = (remLong << 32) |
                    (value[offset + intLen - xlen] & LONG_MASK);
            int q;
            if (dividendEstimate >= 0) {
                q = (int) (dividendEstimate / divisorLong);
                rem = (int) (dividendEstimate - q * divisorLong);
            } else {
                long tmp = divWord(dividendEstimate, divisor);
                q = (int) (tmp & LONG_MASK);
                rem = (int) (tmp >>> 32);
            }
            quotient.value[intLen - xlen] = q;
            remLong = rem & LONG_MASK;
        }

        quotient.normalize();
        // Unnormalize
        if (shift > 0)
            return rem % divisor;
        else
            return rem;
    }

    /**
     * Calculates the quotient of this div b and places the quotient in the
     * provided MutableBigInteger objects and the remainder object is returned.
     *
     */
    MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient) {
        return divide(b,quotient,true);
    }

    MutableBigInteger divide(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
        if (b.intLen < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD ||
                intLen - b.intLen < BigInteger.BURNIKEL_ZIEGLER_OFFSET) {
            return divideKnuth(b, quotient, needRemainder);
        } else {
            return divideAndRemainderBurnikelZiegler(b, quotient);
        }
    }

    /**
     * @see #divideKnuth(MutableBigInteger, MutableBigInteger, boolean)
     */
    MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient) {
        return divideKnuth(b,quotient,true);
    }

    /**
     * Calculates the quotient of this div b and places the quotient in the
     * provided MutableBigInteger objects and the remainder object is returned.
     *
     * Uses Algorithm D in Knuth section 4.3.1.
     * Many optimizations to that algorithm have been adapted from the Colin
     * Plumb C library.
     * It special cases one word divisors for speed. The content of b is not
     * changed.
     *
     */
    MutableBigInteger divideKnuth(MutableBigInteger b, MutableBigInteger quotient, boolean needRemainder) {
        if (b.intLen == 0)
            throw new ArithmeticException("BigInteger divide by zero");

        // Dividend is zero
        if (intLen == 0) {
            quotient.intLen = quotient.offset = 0;
            return needRemainder ? new MutableBigInteger() : null;
        }

        int cmp = compare(b);
        // Dividend less than divisor
        if (cmp < 0) {
            quotient.intLen = quotient.offset = 0;
            return needRemainder ? new MutableBigInteger(this) : null;
        }
        // Dividend equal to divisor
        if (cmp == 0) {
            quotient.value[0] = quotient.intLen = 1;
            quotient.offset = 0;
            return needRemainder ? new MutableBigInteger() : null;
        }

        quotient.clear();
        // Special case one word divisor
        if (b.intLen == 1) {
            int r = divideOneWord(b.value[b.offset], quotient);
            if(needRemainder) {
                if (r == 0)
                    return new MutableBigInteger();
                return new MutableBigInteger(r);
            } else {
                return null;
            }
        }

        // Cancel common powers of two if we're above the KNUTH_POW2_* thresholds
        if (intLen >= KNUTH_POW2_THRESH_LEN) {
            int trailingZeroBits = Math.min(getLowestSetBit(), b.getLowestSetBit());
            if (trailingZeroBits >= KNUTH_POW2_THRESH_ZEROS*32) {
                MutableBigInteger a = new MutableBigInteger(this);
                b = new MutableBigInteger(b);
                a.rightShift(trailingZeroBits);
                b.rightShift(trailingZeroBits);
                MutableBigInteger r = a.divideKnuth(b, quotient);
                r.leftShift(trailingZeroBits);
                return r;
            }
        }

        return divideMagnitude(b, quotient, needRemainder);
    }

    /**
     * Computes {@code this/b} and {@code this%b} using the
     *  Burnikel-Ziegler algorithm.
     * This method implements algorithm 3 from pg. 9 of the Burnikel-Ziegler paper.
     * The parameter beta was chosen to b 232 so almost all shifts are
     * multiples of 32 bits.
* {@code this} and {@code b} must be nonnegative. * @param b the divisor * @param quotient output parameter for {@code this/b} * @return the remainder */ MutableBigInteger divideAndRemainderBurnikelZiegler(MutableBigInteger b, MutableBigInteger quotient) { int r = intLen; int s = b.intLen; // Clear the quotient quotient.offset = quotient.intLen = 0; if (r < s) { return this; } else { // Unlike Knuth division, we don't check for common powers of two here because // BZ already runs faster if both numbers contain powers of two and cancelling them has no // additional benefit. // step 1: let m = min{2^k | (2^k)*BURNIKEL_ZIEGLER_THRESHOLD > s} int m = 1 << (32-Integer.numberOfLeadingZeros(s/BigInteger.BURNIKEL_ZIEGLER_THRESHOLD)); int j = (s+m-1) / m; // step 2a: j = ceil(s/m) int n = j * m; // step 2b: block length in 32-bit units long n32 = 32L * n; // block length in bits int sigma = (int) Math.max(0, n32 - b.bitLength()); // step 3: sigma = max{T | (2^T)*B < beta^n} MutableBigInteger bShifted = new MutableBigInteger(b); bShifted.safeLeftShift(sigma); // step 4a: shift b so its length is a multiple of n MutableBigInteger aShifted = new MutableBigInteger (this); aShifted.safeLeftShift(sigma); // step 4b: shift a by the same amount // step 5: t is the number of blocks needed to accommodate a plus one additional bit int t = (int) ((aShifted.bitLength()+n32) / n32); if (t < 2) { t = 2; } // step 6: conceptually split a into blocks a[t-1], ..., a[0] MutableBigInteger a1 = aShifted.getBlock(t-1, t, n); // the most significant block of a // step 7: z[t-2] = [a[t-1], a[t-2]] MutableBigInteger z = aShifted.getBlock(t-2, t, n); // the second to most significant block z.addDisjoint(a1, n); // z[t-2] // do schoolbook division on blocks, dividing 2-block numbers by 1-block numbers MutableBigInteger qi = new MutableBigInteger(); MutableBigInteger ri; for (int i=t-2; i > 0; i--) { // step 8a: compute (qi,ri) such that z=b*qi+ri ri = z.divide2n1n(bShifted, qi); // step 8b: z = [ri, a[i-1]] z = aShifted.getBlock(i-1, t, n); // a[i-1] z.addDisjoint(ri, n); quotient.addShifted(qi, i*n); // update q (part of step 9) } // final iteration of step 8: do the loop one more time for i=0 but leave z unchanged ri = z.divide2n1n(bShifted, qi); quotient.add(qi); ri.rightShift(sigma); // step 9: a and b were shifted, so shift back return ri; } } /** * This method implements algorithm 1 from pg. 4 of the Burnikel-Ziegler paper. * It divides a 2n-digit number by a n-digit number.
* The parameter beta is 232 so all shifts are multiples of 32 bits. *
* {@code this} must be a nonnegative number such that {@code this.bitLength() <= 2*b.bitLength()} * @param b a positive number such that {@code b.bitLength()} is even * @param quotient output parameter for {@code this/b} * @return {@code this%b} */ private MutableBigInteger divide2n1n(MutableBigInteger b, MutableBigInteger quotient) { int n = b.intLen; // step 1: base case if (n%2 != 0 || n < BigInteger.BURNIKEL_ZIEGLER_THRESHOLD) { return divideKnuth(b, quotient); } // step 2: view this as [a1,a2,a3,a4] where each ai is n/2 ints or less MutableBigInteger aUpper = new MutableBigInteger(this); aUpper.safeRightShift(32*(n/2)); // aUpper = [a1,a2,a3] keepLower(n/2); // this = a4 // step 3: q1=aUpper/b, r1=aUpper%b MutableBigInteger q1 = new MutableBigInteger(); MutableBigInteger r1 = aUpper.divide3n2n(b, q1); // step 4: quotient=[r1,this]/b, r2=[r1,this]%b addDisjoint(r1, n/2); // this = [r1,this] MutableBigInteger r2 = divide3n2n(b, quotient); // step 5: let quotient=[q1,quotient] and return r2 quotient.addDisjoint(q1, n/2); return r2; } /** * This method implements algorithm 2 from pg. 5 of the Burnikel-Ziegler paper. * It divides a 3n-digit number by a 2n-digit number.
* The parameter beta is 232 so all shifts are multiples of 32 bits.
*
* {@code this} must be a nonnegative number such that {@code 2*this.bitLength() <= 3*b.bitLength()} * @param quotient output parameter for {@code this/b} * @return {@code this%b} */ private MutableBigInteger divide3n2n(MutableBigInteger b, MutableBigInteger quotient) { int n = b.intLen / 2; // half the length of b in ints // step 1: view this as [a1,a2,a3] where each ai is n ints or less; let a12=[a1,a2] MutableBigInteger a12 = new MutableBigInteger(this); a12.safeRightShift(32*n); // step 2: view b as [b1,b2] where each bi is n ints or less MutableBigInteger b1 = new MutableBigInteger(b); b1.safeRightShift(n * 32); BigInteger b2 = b.getLower(n); MutableBigInteger r; MutableBigInteger d; if (compareShifted(b, n) < 0) { // step 3a: if a1=b1, let quotient=beta^n-1 and r=a12-b1*2^n+b1 quotient.ones(n); a12.add(b1); b1.leftShift(32*n); a12.subtract(b1); r = a12; // step 4: d=quotient*b2=(b2 << 32*n) - b2 d = new MutableBigInteger(b2); d.leftShift(32 * n); d.subtract(new MutableBigInteger(b2)); } // step 5: r = r*beta^n + a3 - d (paper says a4) // However, don't subtract d until after the while loop so r doesn't become negative r.leftShift(32 * n); r.addLower(this, n); // step 6: add b until r>=d while (r.compare(d) < 0) { r.add(b); quotient.subtract(MutableBigInteger.ONE); } r.subtract(d); return r; } /** * Returns a {@code MutableBigInteger} containing {@code blockLength} ints from * {@code this} number, starting at {@code index*blockLength}.
* Used by Burnikel-Ziegler division. * @param index the block index * @param numBlocks the total number of blocks in {@code this} number * @param blockLength length of one block in units of 32 bits * @return */ private MutableBigInteger getBlock(int index, int numBlocks, int blockLength) { int blockStart = index * blockLength; if (blockStart >= intLen) { return new MutableBigInteger(); } int blockEnd; if (index == numBlocks-1) { blockEnd = intLen; } else { blockEnd = (index+1) * blockLength; } if (blockEnd > intLen) { return new MutableBigInteger(); } int[] newVal = Arrays.copyOfRange(value, offset+intLen-blockEnd, offset+intLen-blockStart); return new MutableBigInteger(newVal); } /** @see BigInteger#bitLength() */ long bitLength() { if (intLen == 0) return 0; return intLen*32L - Integer.numberOfLeadingZeros(value[offset]); } /** * Internally used to calculate the quotient of this div v and places the * quotient in the provided MutableBigInteger object and the remainder is * returned. * * @return the remainder of the division will be returned. */ long divide(long v, MutableBigInteger quotient) { if (v == 0) throw new ArithmeticException("BigInteger divide by zero"); // Dividend is zero if (intLen == 0) { quotient.intLen = quotient.offset = 0; return 0; } if (v < 0) v = -v; int d = (int)(v >>> 32); quotient.clear(); // Special case on word divisor if (d == 0) return divideOneWord((int)v, quotient) & LONG_MASK; else { return divideLongMagnitude(v, quotient).toLong(); } } private static void copyAndShift(int[] src, int srcFrom, int srcLen, int[] dst, int dstFrom, int shift) { int n2 = 32 - shift; int c=src[srcFrom]; for (int i=0; i < srcLen-1; i++) { int b = c; c = src[++srcFrom]; dst[dstFrom+i] = (b << shift) | (c >>> n2); } dst[dstFrom+srcLen-1] = c << shift; } /** * Divide this MutableBigInteger by the divisor. * The quotient will be placed into the provided quotient object & * the remainder object is returned. */ private MutableBigInteger divideMagnitude(MutableBigInteger div, MutableBigInteger quotient, boolean needRemainder ) { // assert div.intLen > 1 // D1 normalize the divisor int shift = Integer.numberOfLeadingZeros(div.value[div.offset]); // Copy divisor value to protect divisor final int dlen = div.intLen; int[] divisor; MutableBigInteger rem; // Remainder starts as dividend with space for a leading zero if (shift > 0) { divisor = new int[dlen]; copyAndShift(div.value,div.offset,dlen,divisor,0,shift); if (Integer.numberOfLeadingZeros(value[offset]) >= shift) { int[] remarr = new int[intLen + 1]; rem = new MutableBigInteger(remarr); rem.intLen = intLen; rem.offset = 1; copyAndShift(value,offset,intLen,remarr,1,shift); } else { int[] remarr = new int[intLen + 2]; rem = new MutableBigInteger(remarr); rem.intLen = intLen+1; rem.offset = 1; int rFrom = offset; int c=0; int n2 = 32 - shift; for (int i=1; i < intLen+1; i++,rFrom++) { int b = c; c = value[rFrom]; remarr[i] = (b << shift) | (c >>> n2); } remarr[intLen+1] = c << shift; } } else { divisor = Arrays.copyOfRange(div.value, div.offset, div.offset + div.intLen); rem = new MutableBigInteger(new int[intLen + 1]); System.arraycopy(value, offset, rem.value, 1, intLen); rem.intLen = intLen; rem.offset = 1; } int nlen = rem.intLen; // Set the quotient size final int limit = nlen - dlen + 1; if (quotient.value.length < limit) { quotient.value = new int[limit]; quotient.offset = 0; } quotient.intLen = limit; int[] q = quotient.value; // Must insert leading 0 in rem if its length did not change if (rem.intLen == nlen) { rem.offset = 0; rem.value[0] = 0; rem.intLen++; } int dh = divisor[0]; long dhLong = dh & LONG_MASK; int dl = divisor[1]; // D2 Initialize j for (int j=0; j < limit-1; j++) { // D3 Calculate qhat // estimate qhat int qhat = 0; int qrem = 0; boolean skipCorrection = false; int nh = rem.value[j+rem.offset]; int nh2 = nh + 0x80000000; int nm = rem.value[j+1+rem.offset]; if (nh == dh) { qhat = ~0; qrem = nh + nm; skipCorrection = qrem + 0x80000000 < nh2; } else { long nChunk = (((long)nh) << 32) | (nm & LONG_MASK); if (nChunk >= 0) { qhat = (int) (nChunk / dhLong); qrem = (int) (nChunk - (qhat * dhLong)); } else { long tmp = divWord(nChunk, dh); qhat = (int) (tmp & LONG_MASK); qrem = (int) (tmp >>> 32); } } if (qhat == 0) continue; if (!skipCorrection) { // Correct qhat long nl = rem.value[j+2+rem.offset] & LONG_MASK; long rs = ((qrem & LONG_MASK) << 32) | nl; long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK); if (unsignedLongCompare(estProduct, rs)) { qhat--; qrem = (int)((qrem & LONG_MASK) + dhLong); if ((qrem & LONG_MASK) >= dhLong) { estProduct -= (dl & LONG_MASK); rs = ((qrem & LONG_MASK) << 32) | nl; if (unsignedLongCompare(estProduct, rs)) qhat--; } } } // D4 Multiply and subtract rem.value[j+rem.offset] = 0; int borrow = mulsub(rem.value, divisor, qhat, dlen, j+rem.offset); // D5 Test remainder if (borrow + 0x80000000 > nh2) { // D6 Add back divadd(divisor, rem.value, j+1+rem.offset); qhat--; } // Store the quotient digit q[j] = qhat; } // D7 loop on j // D3 Calculate qhat // estimate qhat int qhat = 0; int qrem = 0; boolean skipCorrection = false; int nh = rem.value[limit - 1 + rem.offset]; int nh2 = nh + 0x80000000; int nm = rem.value[limit + rem.offset]; if (nh == dh) { qhat = ~0; qrem = nh + nm; skipCorrection = qrem + 0x80000000 < nh2; } else { long nChunk = (((long) nh) << 32) | (nm & LONG_MASK); if (nChunk >= 0) { qhat = (int) (nChunk / dhLong); qrem = (int) (nChunk - (qhat * dhLong)); } else { long tmp = divWord(nChunk, dh); qhat = (int) (tmp & LONG_MASK); qrem = (int) (tmp >>> 32); } } if (qhat != 0) { if (!skipCorrection) { // Correct qhat long nl = rem.value[limit + 1 + rem.offset] & LONG_MASK; long rs = ((qrem & LONG_MASK) << 32) | nl; long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK); if (unsignedLongCompare(estProduct, rs)) { qhat--; qrem = (int) ((qrem & LONG_MASK) + dhLong); if ((qrem & LONG_MASK) >= dhLong) { estProduct -= (dl & LONG_MASK); rs = ((qrem & LONG_MASK) << 32) | nl; if (unsignedLongCompare(estProduct, rs)) qhat--; } } } // D4 Multiply and subtract int borrow; rem.value[limit - 1 + rem.offset] = 0; if(needRemainder) borrow = mulsub(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset); else borrow = mulsubBorrow(rem.value, divisor, qhat, dlen, limit - 1 + rem.offset); // D5 Test remainder if (borrow + 0x80000000 > nh2) { // D6 Add back if(needRemainder) divadd(divisor, rem.value, limit - 1 + 1 + rem.offset); qhat--; } // Store the quotient digit q[(limit - 1)] = qhat; } if (needRemainder) { // D8 Unnormalize if (shift > 0) rem.rightShift(shift); rem.normalize(); } quotient.normalize(); return needRemainder ? rem : null; } /** * Divide this MutableBigInteger by the divisor represented by positive long * value. The quotient will be placed into the provided quotient object & * the remainder object is returned. */ private MutableBigInteger divideLongMagnitude(long ldivisor, MutableBigInteger quotient) { // Remainder starts as dividend with space for a leading zero MutableBigInteger rem = new MutableBigInteger(new int[intLen + 1]); System.arraycopy(value, offset, rem.value, 1, intLen); rem.intLen = intLen; rem.offset = 1; int nlen = rem.intLen; int limit = nlen - 2 + 1; if (quotient.value.length < limit) { quotient.value = new int[limit]; quotient.offset = 0; } quotient.intLen = limit; int[] q = quotient.value; // D1 normalize the divisor int shift = Long.numberOfLeadingZeros(ldivisor); if (shift > 0) { ldivisor<<=shift; rem.leftShift(shift); } // Must insert leading 0 in rem if its length did not change if (rem.intLen == nlen) { rem.offset = 0; rem.value[0] = 0; rem.intLen++; } int dh = (int)(ldivisor >>> 32); long dhLong = dh & LONG_MASK; int dl = (int)(ldivisor & LONG_MASK); // D2 Initialize j for (int j = 0; j < limit; j++) { // D3 Calculate qhat // estimate qhat int qhat = 0; int qrem = 0; boolean skipCorrection = false; int nh = rem.value[j + rem.offset]; int nh2 = nh + 0x80000000; int nm = rem.value[j + 1 + rem.offset]; if (nh == dh) { qhat = ~0; qrem = nh + nm; skipCorrection = qrem + 0x80000000 < nh2; } else { long nChunk = (((long) nh) << 32) | (nm & LONG_MASK); if (nChunk >= 0) { qhat = (int) (nChunk / dhLong); qrem = (int) (nChunk - (qhat * dhLong)); } else { long tmp = divWord(nChunk, dh); qhat =(int)(tmp & LONG_MASK); qrem = (int)(tmp>>>32); } } if (qhat == 0) continue; if (!skipCorrection) { // Correct qhat long nl = rem.value[j + 2 + rem.offset] & LONG_MASK; long rs = ((qrem & LONG_MASK) << 32) | nl; long estProduct = (dl & LONG_MASK) * (qhat & LONG_MASK); if (unsignedLongCompare(estProduct, rs)) { qhat--; qrem = (int) ((qrem & LONG_MASK) + dhLong); if ((qrem & LONG_MASK) >= dhLong) { estProduct -= (dl & LONG_MASK); rs = ((qrem & LONG_MASK) << 32) | nl; if (unsignedLongCompare(estProduct, rs)) qhat--; } } } // D4 Multiply and subtract rem.value[j + rem.offset] = 0; int borrow = mulsubLong(rem.value, dh, dl, qhat, j + rem.offset); // D5 Test remainder if (borrow + 0x80000000 > nh2) { // D6 Add back divaddLong(dh,dl, rem.value, j + 1 + rem.offset); qhat--; } // Store the quotient digit q[j] = qhat; } // D7 loop on j // D8 Unnormalize if (shift > 0) rem.rightShift(shift); quotient.normalize(); rem.normalize(); return rem; } /** * A primitive used for division by long. * Specialized version of the method divadd. * dh is a high part of the divisor, dl is a low part */ private int divaddLong(int dh, int dl, int[] result, int offset) { long carry = 0; long sum = (dl & LONG_MASK) + (result[1+offset] & LONG_MASK); result[1+offset] = (int)sum; sum = (dh & LONG_MASK) + (result[offset] & LONG_MASK) + carry; result[offset] = (int)sum; carry = sum >>> 32; return (int)carry; } /** * This method is used for division by long. * Specialized version of the method sulsub. * dh is a high part of the divisor, dl is a low part */ private int mulsubLong(int[] q, int dh, int dl, int x, int offset) { long xLong = x & LONG_MASK; offset += 2; long product = (dl & LONG_MASK) * xLong; long difference = q[offset] - product; q[offset--] = (int)difference; long carry = (product >>> 32) + (((difference & LONG_MASK) > (((~(int)product) & LONG_MASK))) ? 1:0); product = (dh & LONG_MASK) * xLong + carry; difference = q[offset] - product; q[offset--] = (int)difference; carry = (product >>> 32) + (((difference & LONG_MASK) > (((~(int)product) & LONG_MASK))) ? 1:0); return (int)carry; } /** * Compare two longs as if they were unsigned. * Returns true iff one is bigger than two. */ private boolean unsignedLongCompare(long one, long two) { return (one+Long.MIN_VALUE) > (two+Long.MIN_VALUE); } /** * This method divides a long quantity by an int to estimate * qhat for two multi precision numbers. It is used when * the signed value of n is less than zero. * Returns long value where high 32 bits contain remainder value and * low 32 bits contain quotient value. */ static long divWord(long n, int d) { long dLong = d & LONG_MASK; long r; long q; if (dLong == 1) { q = (int)n; r = 0; return (r << 32) | (q & LONG_MASK); } // Approximate the quotient and remainder q = (n >>> 1) / (dLong >>> 1); r = n - q*dLong; // Correct the approximation while (r < 0) { r += dLong; q--; } while (r >= dLong) { r -= dLong; q++; } // n - q*dlong == r && 0 <= r not changed. The value of {@code this} is assumed * to be non-negative. * * @implNote The implementation is based on the material in Henry S. Warren, * Jr., Hacker's Delight (2nd ed.) (Addison Wesley, 2013), 279-282. * * @throws ArithmeticException if the value returned by {@code bitLength()} * overflows the range of {@code int}. * @return the integer square root of {@code this} * @since 9 */ MutableBigInteger sqrt() { // Special cases. if (this.isZero()) { return new MutableBigInteger(0); } else if (this.value.length == 1 && (this.value[0] & LONG_MASK) < 4) { // result is unity return ONE; } if (bitLength() <= 63) { // Initial estimate is the square root of the positive long value. long v = new BigInteger(this.value, 1).longValueExact(); long xk = (long)Math.floor(Math.sqrt(v)); // Refine the estimate. do { long xk1 = (xk + v/xk)/2; // Terminate when non-decreasing. if (xk1 >= xk) { return new MutableBigInteger(new int[] { (int)(xk >>> 32), (int)(xk & LONG_MASK) }); } xk = xk1; } while (true); } else { // Set up the initial estimate of the iteration. // Obtain the bitLength > 63. int bitLength = (int) this.bitLength(); if (bitLength != this.bitLength()) { throw new ArithmeticException("bitLength() integer overflow"); } // Determine an even valued right shift into positive long range. int shift = bitLength - 63; if (shift % 2 == 1) { shift++; } // Shift the value into positive long range. MutableBigInteger xk = new MutableBigInteger(this); xk.rightShift(shift); xk.normalize(); // Use the square root of the shifted value as an approximation. double d = new BigInteger(xk.value, 1).doubleValue(); BigInteger bi = BigInteger.valueOf((long)Math.ceil(Math.sqrt(d))); xk = new MutableBigInteger(bi.mag); // Shift the approximate square root back into the original range. xk.leftShift(shift / 2); // Refine the estimate. MutableBigInteger xk1 = new MutableBigInteger(); do { // xk1 = (xk + n/xk)/2 this.divide(xk, xk1, false); xk1.add(xk); xk1.rightShift(1); // Terminate when non-decreasing. if (xk1.compare(xk) >= 0) { return xk; } // xk = xk1 xk.copyValue(xk1); xk1.reset(); } while (true); } } /** * Calculate GCD of this and b. This and b are changed by the computation. */ MutableBigInteger hybridGCD(MutableBigInteger b) { // Use Euclid's algorithm until the numbers are approximately the // same length, then use the binary GCD algorithm to find the GCD. MutableBigInteger a = this; MutableBigInteger q = new MutableBigInteger(); while (b.intLen != 0) { if (Math.abs(a.intLen - b.intLen) < 2) return a.binaryGCD(b); MutableBigInteger r = a.divide(b, q); a = b; b = r; } return a; } /** * Calculate GCD of this and v. * Assumes that this and v are not zero. */ private MutableBigInteger binaryGCD(MutableBigInteger v) { // Algorithm B from Knuth section 4.5.2 MutableBigInteger u = this; MutableBigInteger r = new MutableBigInteger(); // step B1 int s1 = u.getLowestSetBit(); int s2 = v.getLowestSetBit(); int k = (s1 < s2) ? s1 : s2; if (k != 0) { u.rightShift(k); v.rightShift(k); } // step B2 boolean uOdd = (k == s1); MutableBigInteger t = uOdd ? v: u; int tsign = uOdd ? -1 : 1; int lb; while ((lb = t.getLowestSetBit()) >= 0) { // steps B3 and B4 t.rightShift(lb); // step B5 if (tsign > 0) u = t; else v = t; // Special case one word numbers if (u.intLen < 2 && v.intLen < 2) { int x = u.value[u.offset]; int y = v.value[v.offset]; x = binaryGcd(x, y); r.value[0] = x; r.intLen = 1; r.offset = 0; if (k > 0) r.leftShift(k); return r; } // step B6 if ((tsign = u.difference(v)) == 0) break; t = (tsign >= 0) ? u : v; } if (k > 0) u.leftShift(k); return u; } /** * Calculate GCD of a and b interpreted as unsigned integers. */ static int binaryGcd(int a, int b) { if (b == 0) return a; if (a == 0) return b; // Right shift a & b till their last bits equal to 1. int aZeros = Integer.numberOfTrailingZeros(a); int bZeros = Integer.numberOfTrailingZeros(b); a >>>= aZeros; b >>>= bZeros; int t = (aZeros < bZeros ? aZeros : bZeros); while (a != b) { if ((a+0x80000000) > (b+0x80000000)) { // a > b as unsigned a -= b; a >>>= Integer.numberOfTrailingZeros(a); } else { b -= a; b >>>= Integer.numberOfTrailingZeros(b); } } return a< 64) return euclidModInverse(k); int t = inverseMod32(value[offset+intLen-1]); if (k < 33) { t = (k == 32 ? t : t & ((1 << k) - 1)); return new MutableBigInteger(t); } long pLong = (value[offset+intLen-1] & LONG_MASK); if (intLen > 1) pLong |= ((long)value[offset+intLen-2] << 32); long tLong = t & LONG_MASK; tLong = tLong * (2 - pLong * tLong); // 1 more Newton iter step tLong = (k == 64 ? tLong : tLong & ((1L << k) - 1)); MutableBigInteger result = new MutableBigInteger(new int[2]); result.value[0] = (int)(tLong >>> 32); result.value[1] = (int)tLong; result.intLen = 2; result.normalize(); return result; } /** * Returns the multiplicative inverse of val mod 2^32. Assumes val is odd. */ static int inverseMod32(int val) { // Newton's iteration! int t = val; t *= 2 - val*t; t *= 2 - val*t; t *= 2 - val*t; t *= 2 - val*t; return t; } /** * Returns the multiplicative inverse of val mod 2^64. Assumes val is odd. */ static long inverseMod64(long val) { // Newton's iteration! long t = val; t *= 2 - val*t; t *= 2 - val*t; t *= 2 - val*t; t *= 2 - val*t; t *= 2 - val*t; assert(t * val == 1); return t; } /** * Calculate the multiplicative inverse of 2^k mod mod, where mod is odd. */ static MutableBigInteger modInverseBP2(MutableBigInteger mod, int k) { // Copy the mod to protect original return fixup(new MutableBigInteger(1), new MutableBigInteger(mod), k); } /** * Calculate the multiplicative inverse of this mod mod, where mod is odd. * This and mod are not changed by the calculation. * * This method implements an algorithm due to Richard Schroeppel, that uses * the same intermediate representation as Montgomery Reduction * ("Montgomery Form"). The algorithm is described in an unpublished * manuscript entitled "Fast Modular Reciprocals." */ private MutableBigInteger modInverse(MutableBigInteger mod) { MutableBigInteger p = new MutableBigInteger(mod); MutableBigInteger f = new MutableBigInteger(this); MutableBigInteger g = new MutableBigInteger(p); SignedMutableBigInteger c = new SignedMutableBigInteger(1); SignedMutableBigInteger d = new SignedMutableBigInteger(); MutableBigInteger temp = null; SignedMutableBigInteger sTemp = null; int k = 0; // Right shift f k times until odd, left shift d k times if (f.isEven()) { int trailingZeros = f.getLowestSetBit(); f.rightShift(trailingZeros); d.leftShift(trailingZeros); k = trailingZeros; } // The Almost Inverse Algorithm while (!f.isOne()) { // If gcd(f, g) != 1, number is not invertible modulo mod if (f.isZero()) throw new ArithmeticException("BigInteger not invertible."); // If f < g exchange f, g and c, d if (f.compare(g) < 0) { temp = f; f = g; g = temp; sTemp = d; d = c; c = sTemp; } // If f == g (mod 4) if (((f.value[f.offset + f.intLen - 1] ^ g.value[g.offset + g.intLen - 1]) & 3) == 0) { f.subtract(g); c.signedSubtract(d); } else { // If f != g (mod 4) f.add(g); c.signedAdd(d); } // Right shift f k times until odd, left shift d k times int trailingZeros = f.getLowestSetBit(); f.rightShift(trailingZeros); d.leftShift(trailingZeros); k += trailingZeros; } while (c.sign < 0) c.signedAdd(p); return fixup(c, p, k); } /** * The Fixup Algorithm * Calculates X such that X = C * 2^(-k) (mod P) * Assumes C

> 5; i < numWords; i++) { // V = R * c (mod 2^j) int v = r * c.value[c.offset + c.intLen-1]; // c = c + (v * p) p.mul(v, temp); c.add(temp); // c = c / 2^j c.intLen--; } int numBits = k & 0x1f; if (numBits != 0) { // V = R * c (mod 2^j) int v = r * c.value[c.offset + c.intLen-1]; v &= ((1<= 0) c.subtract(p); return c; } /** * Uses the extended Euclidean algorithm to compute the modInverse of base * mod a modulus that is a power of 2. The modulus is 2^k. */ MutableBigInteger euclidModInverse(int k) { MutableBigInteger b = new MutableBigInteger(1); b.leftShift(k); MutableBigInteger mod = new MutableBigInteger(b); MutableBigInteger a = new MutableBigInteger(this); MutableBigInteger q = new MutableBigInteger(); MutableBigInteger r = b.divide(a, q); MutableBigInteger swapper = b; // swap b & r b = r; r = swapper; MutableBigInteger t1 = new MutableBigInteger(q); MutableBigInteger t0 = new MutableBigInteger(1); MutableBigInteger temp = new MutableBigInteger(); while (!b.isOne()) { r = a.divide(b, q); if (r.intLen == 0) throw new ArithmeticException("BigInteger not invertible."); swapper = r; a = swapper; if (q.intLen == 1) t1.mul(q.value[q.offset], temp); else q.multiply(t1, temp); swapper = q; q = temp; temp = swapper; t0.add(q); if (a.isOne()) return t0; r = b.divide(a, q); if (r.intLen == 0) throw new ArithmeticException("BigInteger not invertible."); swapper = b; b = r; if (q.intLen == 1) t0.mul(q.value[q.offset], temp); else q.multiply(t0, temp); swapper = q; q = temp; temp = swapper; t1.add(q); } mod.subtract(t1); return mod; } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy