META-INF.modules.java.base.classes.java.util.concurrent.PriorityBlockingQueue Maven / Gradle / Ivy
Show all versions of java.base Show documentation
/*
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
/*
* This file is available under and governed by the GNU General Public
* License version 2 only, as published by the Free Software Foundation.
* However, the following notice accompanied the original version of this
* file:
*
* Written by Doug Lea with assistance from members of JCP JSR-166
* Expert Group and released to the public domain, as explained at
* http://creativecommons.org/publicdomain/zero/1.0/
*/
package java.util.concurrent;
import java.lang.invoke.MethodHandles;
import java.lang.invoke.VarHandle;
import java.util.AbstractQueue;
import java.util.Arrays;
import java.util.Collection;
import java.util.Comparator;
import java.util.Iterator;
import java.util.NoSuchElementException;
import java.util.Objects;
import java.util.PriorityQueue;
import java.util.Queue;
import java.util.SortedSet;
import java.util.Spliterator;
import java.util.concurrent.locks.Condition;
import java.util.concurrent.locks.ReentrantLock;
import java.util.function.Consumer;
import java.util.function.Predicate;
import jdk.internal.access.SharedSecrets;
/**
* An unbounded {@linkplain BlockingQueue blocking queue} that uses
* the same ordering rules as class {@link PriorityQueue} and supplies
* blocking retrieval operations. While this queue is logically
* unbounded, attempted additions may fail due to resource exhaustion
* (causing {@code OutOfMemoryError}). This class does not permit
* {@code null} elements. A priority queue relying on {@linkplain
* Comparable natural ordering} also does not permit insertion of
* non-comparable objects (doing so results in
* {@code ClassCastException}).
*
* This class and its iterator implement all of the optional
* methods of the {@link Collection} and {@link Iterator} interfaces.
* The Iterator provided in method {@link #iterator()} and the
* Spliterator provided in method {@link #spliterator()} are not
* guaranteed to traverse the elements of the PriorityBlockingQueue in
* any particular order. If you need ordered traversal, consider using
* {@code Arrays.sort(pq.toArray())}. Also, method {@code drainTo} can
* be used to remove some or all elements in priority order and
* place them in another collection.
*
*
Operations on this class make no guarantees about the ordering
* of elements with equal priority. If you need to enforce an
* ordering, you can define custom classes or comparators that use a
* secondary key to break ties in primary priority values. For
* example, here is a class that applies first-in-first-out
* tie-breaking to comparable elements. To use it, you would insert a
* {@code new FIFOEntry(anEntry)} instead of a plain entry object.
*
*
{@code
* class FIFOEntry>
* implements Comparable> {
* static final AtomicLong seq = new AtomicLong(0);
* final long seqNum;
* final E entry;
* public FIFOEntry(E entry) {
* seqNum = seq.getAndIncrement();
* this.entry = entry;
* }
* public E getEntry() { return entry; }
* public int compareTo(FIFOEntry other) {
* int res = entry.compareTo(other.entry);
* if (res == 0 && other.entry != this.entry)
* res = (seqNum < other.seqNum ? -1 : 1);
* return res;
* }
* }}
*
* This class is a member of the
*
* Java Collections Framework.
*
* @since 1.5
* @author Doug Lea
* @param the type of elements held in this queue
*/
@SuppressWarnings("unchecked")
public class PriorityBlockingQueue extends AbstractQueue
implements BlockingQueue, java.io.Serializable {
private static final long serialVersionUID = 5595510919245408276L;
/*
* The implementation uses an array-based binary heap, with public
* operations protected with a single lock. However, allocation
* during resizing uses a simple spinlock (used only while not
* holding main lock) in order to allow takes to operate
* concurrently with allocation. This avoids repeated
* postponement of waiting consumers and consequent element
* build-up. The need to back away from lock during allocation
* makes it impossible to simply wrap delegated
* java.util.PriorityQueue operations within a lock, as was done
* in a previous version of this class. To maintain
* interoperability, a plain PriorityQueue is still used during
* serialization, which maintains compatibility at the expense of
* transiently doubling overhead.
*/
/**
* Default array capacity.
*/
private static final int DEFAULT_INITIAL_CAPACITY = 11;
/**
* The maximum size of array to allocate.
* Some VMs reserve some header words in an array.
* Attempts to allocate larger arrays may result in
* OutOfMemoryError: Requested array size exceeds VM limit
*/
private static final int MAX_ARRAY_SIZE = Integer.MAX_VALUE - 8;
/**
* Priority queue represented as a balanced binary heap: the two
* children of queue[n] are queue[2*n+1] and queue[2*(n+1)]. The
* priority queue is ordered by comparator, or by the elements'
* natural ordering, if comparator is null: For each node n in the
* heap and each descendant d of n, n <= d. The element with the
* lowest value is in queue[0], assuming the queue is nonempty.
*/
private transient Object[] queue;
/**
* The number of elements in the priority queue.
*/
private transient int size;
/**
* The comparator, or null if priority queue uses elements'
* natural ordering.
*/
private transient Comparator super E> comparator;
/**
* Lock used for all public operations.
*/
private final ReentrantLock lock = new ReentrantLock();
/**
* Condition for blocking when empty.
*/
private final Condition notEmpty = lock.newCondition();
/**
* Spinlock for allocation, acquired via CAS.
*/
private transient volatile int allocationSpinLock;
/**
* A plain PriorityQueue used only for serialization,
* to maintain compatibility with previous versions
* of this class. Non-null only during serialization/deserialization.
*/
private PriorityQueue q;
/**
* Creates a {@code PriorityBlockingQueue} with the default
* initial capacity (11) that orders its elements according to
* their {@linkplain Comparable natural ordering}.
*/
public PriorityBlockingQueue() {
this(DEFAULT_INITIAL_CAPACITY, null);
}
/**
* Creates a {@code PriorityBlockingQueue} with the specified
* initial capacity that orders its elements according to their
* {@linkplain Comparable natural ordering}.
*
* @param initialCapacity the initial capacity for this priority queue
* @throws IllegalArgumentException if {@code initialCapacity} is less
* than 1
*/
public PriorityBlockingQueue(int initialCapacity) {
this(initialCapacity, null);
}
/**
* Creates a {@code PriorityBlockingQueue} with the specified initial
* capacity that orders its elements according to the specified
* comparator.
*
* @param initialCapacity the initial capacity for this priority queue
* @param comparator the comparator that will be used to order this
* priority queue. If {@code null}, the {@linkplain Comparable
* natural ordering} of the elements will be used.
* @throws IllegalArgumentException if {@code initialCapacity} is less
* than 1
*/
public PriorityBlockingQueue(int initialCapacity,
Comparator super E> comparator) {
if (initialCapacity < 1)
throw new IllegalArgumentException();
this.comparator = comparator;
this.queue = new Object[Math.max(1, initialCapacity)];
}
/**
* Creates a {@code PriorityBlockingQueue} containing the elements
* in the specified collection. If the specified collection is a
* {@link SortedSet} or a {@link PriorityQueue}, this
* priority queue will be ordered according to the same ordering.
* Otherwise, this priority queue will be ordered according to the
* {@linkplain Comparable natural ordering} of its elements.
*
* @param c the collection whose elements are to be placed
* into this priority queue
* @throws ClassCastException if elements of the specified collection
* cannot be compared to one another according to the priority
* queue's ordering
* @throws NullPointerException if the specified collection or any
* of its elements are null
*/
public PriorityBlockingQueue(Collection extends E> c) {
boolean heapify = true; // true if not known to be in heap order
boolean screen = true; // true if must screen for nulls
if (c instanceof SortedSet>) {
SortedSet extends E> ss = (SortedSet extends E>) c;
this.comparator = (Comparator super E>) ss.comparator();
heapify = false;
}
else if (c instanceof PriorityBlockingQueue>) {
PriorityBlockingQueue extends E> pq =
(PriorityBlockingQueue extends E>) c;
this.comparator = (Comparator super E>) pq.comparator();
screen = false;
if (pq.getClass() == PriorityBlockingQueue.class) // exact match
heapify = false;
}
Object[] es = c.toArray();
int n = es.length;
// If c.toArray incorrectly doesn't return Object[], copy it.
if (es.getClass() != Object[].class)
es = Arrays.copyOf(es, n, Object[].class);
if (screen && (n == 1 || this.comparator != null)) {
for (Object e : es)
if (e == null)
throw new NullPointerException();
}
this.queue = ensureNonEmpty(es);
this.size = n;
if (heapify)
heapify();
}
/** Ensures that queue[0] exists, helping peek() and poll(). */
private static Object[] ensureNonEmpty(Object[] es) {
return (es.length > 0) ? es : new Object[1];
}
/**
* Tries to grow array to accommodate at least one more element
* (but normally expand by about 50%), giving up (allowing retry)
* on contention (which we expect to be rare). Call only while
* holding lock.
*
* @param array the heap array
* @param oldCap the length of the array
*/
private void tryGrow(Object[] array, int oldCap) {
lock.unlock(); // must release and then re-acquire main lock
Object[] newArray = null;
if (allocationSpinLock == 0 &&
ALLOCATIONSPINLOCK.compareAndSet(this, 0, 1)) {
try {
int newCap = oldCap + ((oldCap < 64) ?
(oldCap + 2) : // grow faster if small
(oldCap >> 1));
if (newCap - MAX_ARRAY_SIZE > 0) { // possible overflow
int minCap = oldCap + 1;
if (minCap < 0 || minCap > MAX_ARRAY_SIZE)
throw new OutOfMemoryError();
newCap = MAX_ARRAY_SIZE;
}
if (newCap > oldCap && queue == array)
newArray = new Object[newCap];
} finally {
allocationSpinLock = 0;
}
}
if (newArray == null) // back off if another thread is allocating
Thread.yield();
lock.lock();
if (newArray != null && queue == array) {
queue = newArray;
System.arraycopy(array, 0, newArray, 0, oldCap);
}
}
/**
* Mechanics for poll(). Call only while holding lock.
*/
private E dequeue() {
// assert lock.isHeldByCurrentThread();
final Object[] es;
final E result;
if ((result = (E) ((es = queue)[0])) != null) {
final int n;
final E x = (E) es[(n = --size)];
es[n] = null;
if (n > 0) {
final Comparator super E> cmp;
if ((cmp = comparator) == null)
siftDownComparable(0, x, es, n);
else
siftDownUsingComparator(0, x, es, n, cmp);
}
}
return result;
}
/**
* Inserts item x at position k, maintaining heap invariant by
* promoting x up the tree until it is greater than or equal to
* its parent, or is the root.
*
* To simplify and speed up coercions and comparisons, the
* Comparable and Comparator versions are separated into different
* methods that are otherwise identical. (Similarly for siftDown.)
*
* @param k the position to fill
* @param x the item to insert
* @param es the heap array
*/
private static void siftUpComparable(int k, T x, Object[] es) {
Comparable super T> key = (Comparable super T>) x;
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = es[parent];
if (key.compareTo((T) e) >= 0)
break;
es[k] = e;
k = parent;
}
es[k] = key;
}
private static void siftUpUsingComparator(
int k, T x, Object[] es, Comparator super T> cmp) {
while (k > 0) {
int parent = (k - 1) >>> 1;
Object e = es[parent];
if (cmp.compare(x, (T) e) >= 0)
break;
es[k] = e;
k = parent;
}
es[k] = x;
}
/**
* Inserts item x at position k, maintaining heap invariant by
* demoting x down the tree repeatedly until it is less than or
* equal to its children or is a leaf.
*
* @param k the position to fill
* @param x the item to insert
* @param es the heap array
* @param n heap size
*/
private static void siftDownComparable(int k, T x, Object[] es, int n) {
// assert n > 0;
Comparable super T> key = (Comparable super T>)x;
int half = n >>> 1; // loop while a non-leaf
while (k < half) {
int child = (k << 1) + 1; // assume left child is least
Object c = es[child];
int right = child + 1;
if (right < n &&
((Comparable super T>) c).compareTo((T) es[right]) > 0)
c = es[child = right];
if (key.compareTo((T) c) <= 0)
break;
es[k] = c;
k = child;
}
es[k] = key;
}
private static void siftDownUsingComparator(
int k, T x, Object[] es, int n, Comparator super T> cmp) {
// assert n > 0;
int half = n >>> 1;
while (k < half) {
int child = (k << 1) + 1;
Object c = es[child];
int right = child + 1;
if (right < n && cmp.compare((T) c, (T) es[right]) > 0)
c = es[child = right];
if (cmp.compare(x, (T) c) <= 0)
break;
es[k] = c;
k = child;
}
es[k] = x;
}
/**
* Establishes the heap invariant (described above) in the entire tree,
* assuming nothing about the order of the elements prior to the call.
* This classic algorithm due to Floyd (1964) is known to be O(size).
*/
private void heapify() {
final Object[] es = queue;
int n = size, i = (n >>> 1) - 1;
final Comparator super E> cmp;
if ((cmp = comparator) == null)
for (; i >= 0; i--)
siftDownComparable(i, (E) es[i], es, n);
else
for (; i >= 0; i--)
siftDownUsingComparator(i, (E) es[i], es, n, cmp);
}
/**
* Inserts the specified element into this priority queue.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Collection#add})
* @throws ClassCastException if the specified element cannot be compared
* with elements currently in the priority queue according to the
* priority queue's ordering
* @throws NullPointerException if the specified element is null
*/
public boolean add(E e) {
return offer(e);
}
/**
* Inserts the specified element into this priority queue.
* As the queue is unbounded, this method will never return {@code false}.
*
* @param e the element to add
* @return {@code true} (as specified by {@link Queue#offer})
* @throws ClassCastException if the specified element cannot be compared
* with elements currently in the priority queue according to the
* priority queue's ordering
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e) {
if (e == null)
throw new NullPointerException();
final ReentrantLock lock = this.lock;
lock.lock();
int n, cap;
Object[] es;
while ((n = size) >= (cap = (es = queue).length))
tryGrow(es, cap);
try {
final Comparator super E> cmp;
if ((cmp = comparator) == null)
siftUpComparable(n, e, es);
else
siftUpUsingComparator(n, e, es, cmp);
size = n + 1;
notEmpty.signal();
} finally {
lock.unlock();
}
return true;
}
/**
* Inserts the specified element into this priority queue.
* As the queue is unbounded, this method will never block.
*
* @param e the element to add
* @throws ClassCastException if the specified element cannot be compared
* with elements currently in the priority queue according to the
* priority queue's ordering
* @throws NullPointerException if the specified element is null
*/
public void put(E e) {
offer(e); // never need to block
}
/**
* Inserts the specified element into this priority queue.
* As the queue is unbounded, this method will never block or
* return {@code false}.
*
* @param e the element to add
* @param timeout This parameter is ignored as the method never blocks
* @param unit This parameter is ignored as the method never blocks
* @return {@code true} (as specified by
* {@link BlockingQueue#offer(Object,long,TimeUnit) BlockingQueue.offer})
* @throws ClassCastException if the specified element cannot be compared
* with elements currently in the priority queue according to the
* priority queue's ordering
* @throws NullPointerException if the specified element is null
*/
public boolean offer(E e, long timeout, TimeUnit unit) {
return offer(e); // never need to block
}
public E poll() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return dequeue();
} finally {
lock.unlock();
}
}
public E take() throws InterruptedException {
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
E result;
try {
while ( (result = dequeue()) == null)
notEmpty.await();
} finally {
lock.unlock();
}
return result;
}
public E poll(long timeout, TimeUnit unit) throws InterruptedException {
long nanos = unit.toNanos(timeout);
final ReentrantLock lock = this.lock;
lock.lockInterruptibly();
E result;
try {
while ( (result = dequeue()) == null && nanos > 0)
nanos = notEmpty.awaitNanos(nanos);
} finally {
lock.unlock();
}
return result;
}
public E peek() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return (E) queue[0];
} finally {
lock.unlock();
}
}
/**
* Returns the comparator used to order the elements in this queue,
* or {@code null} if this queue uses the {@linkplain Comparable
* natural ordering} of its elements.
*
* @return the comparator used to order the elements in this queue,
* or {@code null} if this queue uses the natural
* ordering of its elements
*/
public Comparator super E> comparator() {
return comparator;
}
public int size() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return size;
} finally {
lock.unlock();
}
}
/**
* Always returns {@code Integer.MAX_VALUE} because
* a {@code PriorityBlockingQueue} is not capacity constrained.
* @return {@code Integer.MAX_VALUE} always
*/
public int remainingCapacity() {
return Integer.MAX_VALUE;
}
private int indexOf(Object o) {
if (o != null) {
final Object[] es = queue;
for (int i = 0, n = size; i < n; i++)
if (o.equals(es[i]))
return i;
}
return -1;
}
/**
* Removes the ith element from queue.
*/
private void removeAt(int i) {
final Object[] es = queue;
final int n = size - 1;
if (n == i) // removed last element
es[i] = null;
else {
E moved = (E) es[n];
es[n] = null;
final Comparator super E> cmp;
if ((cmp = comparator) == null)
siftDownComparable(i, moved, es, n);
else
siftDownUsingComparator(i, moved, es, n, cmp);
if (es[i] == moved) {
if (cmp == null)
siftUpComparable(i, moved, es);
else
siftUpUsingComparator(i, moved, es, cmp);
}
}
size = n;
}
/**
* Removes a single instance of the specified element from this queue,
* if it is present. More formally, removes an element {@code e} such
* that {@code o.equals(e)}, if this queue contains one or more such
* elements. Returns {@code true} if and only if this queue contained
* the specified element (or equivalently, if this queue changed as a
* result of the call).
*
* @param o element to be removed from this queue, if present
* @return {@code true} if this queue changed as a result of the call
*/
public boolean remove(Object o) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
int i = indexOf(o);
if (i == -1)
return false;
removeAt(i);
return true;
} finally {
lock.unlock();
}
}
/**
* Identity-based version for use in Itr.remove.
*
* @param o element to be removed from this queue, if present
*/
void removeEq(Object o) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Object[] es = queue;
for (int i = 0, n = size; i < n; i++) {
if (o == es[i]) {
removeAt(i);
break;
}
}
} finally {
lock.unlock();
}
}
/**
* Returns {@code true} if this queue contains the specified element.
* More formally, returns {@code true} if and only if this queue contains
* at least one element {@code e} such that {@code o.equals(e)}.
*
* @param o object to be checked for containment in this queue
* @return {@code true} if this queue contains the specified element
*/
public boolean contains(Object o) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return indexOf(o) != -1;
} finally {
lock.unlock();
}
}
public String toString() {
return Helpers.collectionToString(this);
}
/**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection super E> c) {
return drainTo(c, Integer.MAX_VALUE);
}
/**
* @throws UnsupportedOperationException {@inheritDoc}
* @throws ClassCastException {@inheritDoc}
* @throws NullPointerException {@inheritDoc}
* @throws IllegalArgumentException {@inheritDoc}
*/
public int drainTo(Collection super E> c, int maxElements) {
Objects.requireNonNull(c);
if (c == this)
throw new IllegalArgumentException();
if (maxElements <= 0)
return 0;
final ReentrantLock lock = this.lock;
lock.lock();
try {
int n = Math.min(size, maxElements);
for (int i = 0; i < n; i++) {
c.add((E) queue[0]); // In this order, in case add() throws.
dequeue();
}
return n;
} finally {
lock.unlock();
}
}
/**
* Atomically removes all of the elements from this queue.
* The queue will be empty after this call returns.
*/
public void clear() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Object[] es = queue;
for (int i = 0, n = size; i < n; i++)
es[i] = null;
size = 0;
} finally {
lock.unlock();
}
}
/**
* Returns an array containing all of the elements in this queue.
* The returned array elements are in no particular order.
*
* The returned array will be "safe" in that no references to it are
* maintained by this queue. (In other words, this method must allocate
* a new array). The caller is thus free to modify the returned array.
*
*
This method acts as bridge between array-based and collection-based
* APIs.
*
* @return an array containing all of the elements in this queue
*/
public Object[] toArray() {
final ReentrantLock lock = this.lock;
lock.lock();
try {
return Arrays.copyOf(queue, size);
} finally {
lock.unlock();
}
}
/**
* Returns an array containing all of the elements in this queue; the
* runtime type of the returned array is that of the specified array.
* The returned array elements are in no particular order.
* If the queue fits in the specified array, it is returned therein.
* Otherwise, a new array is allocated with the runtime type of the
* specified array and the size of this queue.
*
*
If this queue fits in the specified array with room to spare
* (i.e., the array has more elements than this queue), the element in
* the array immediately following the end of the queue is set to
* {@code null}.
*
*
Like the {@link #toArray()} method, this method acts as bridge between
* array-based and collection-based APIs. Further, this method allows
* precise control over the runtime type of the output array, and may,
* under certain circumstances, be used to save allocation costs.
*
*
Suppose {@code x} is a queue known to contain only strings.
* The following code can be used to dump the queue into a newly
* allocated array of {@code String}:
*
*
{@code String[] y = x.toArray(new String[0]);}
*
* Note that {@code toArray(new Object[0])} is identical in function to
* {@code toArray()}.
*
* @param a the array into which the elements of the queue are to
* be stored, if it is big enough; otherwise, a new array of the
* same runtime type is allocated for this purpose
* @return an array containing all of the elements in this queue
* @throws ArrayStoreException if the runtime type of the specified array
* is not a supertype of the runtime type of every element in
* this queue
* @throws NullPointerException if the specified array is null
*/
public T[] toArray(T[] a) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
int n = size;
if (a.length < n)
// Make a new array of a's runtime type, but my contents:
return (T[]) Arrays.copyOf(queue, size, a.getClass());
System.arraycopy(queue, 0, a, 0, n);
if (a.length > n)
a[n] = null;
return a;
} finally {
lock.unlock();
}
}
/**
* Returns an iterator over the elements in this queue. The
* iterator does not return the elements in any particular order.
*
* The returned iterator is
* weakly consistent.
*
* @return an iterator over the elements in this queue
*/
public Iterator iterator() {
return new Itr(toArray());
}
/**
* Snapshot iterator that works off copy of underlying q array.
*/
final class Itr implements Iterator {
final Object[] array; // Array of all elements
int cursor; // index of next element to return
int lastRet = -1; // index of last element, or -1 if no such
Itr(Object[] array) {
this.array = array;
}
public boolean hasNext() {
return cursor < array.length;
}
public E next() {
if (cursor >= array.length)
throw new NoSuchElementException();
return (E)array[lastRet = cursor++];
}
public void remove() {
if (lastRet < 0)
throw new IllegalStateException();
removeEq(array[lastRet]);
lastRet = -1;
}
public void forEachRemaining(Consumer super E> action) {
Objects.requireNonNull(action);
final Object[] es = array;
int i;
if ((i = cursor) < es.length) {
lastRet = -1;
cursor = es.length;
for (; i < es.length; i++)
action.accept((E) es[i]);
lastRet = es.length - 1;
}
}
}
/**
* Saves this queue to a stream (that is, serializes it).
*
* For compatibility with previous version of this class, elements
* are first copied to a java.util.PriorityQueue, which is then
* serialized.
*
* @param s the stream
* @throws java.io.IOException if an I/O error occurs
*/
private void writeObject(java.io.ObjectOutputStream s)
throws java.io.IOException {
lock.lock();
try {
// avoid zero capacity argument
q = new PriorityQueue(Math.max(size, 1), comparator);
q.addAll(this);
s.defaultWriteObject();
} finally {
q = null;
lock.unlock();
}
}
/**
* Reconstitutes this queue from a stream (that is, deserializes it).
* @param s the stream
* @throws ClassNotFoundException if the class of a serialized object
* could not be found
* @throws java.io.IOException if an I/O error occurs
*/
private void readObject(java.io.ObjectInputStream s)
throws java.io.IOException, ClassNotFoundException {
try {
s.defaultReadObject();
int sz = q.size();
SharedSecrets.getJavaObjectInputStreamAccess().checkArray(s, Object[].class, sz);
this.queue = new Object[Math.max(1, sz)];
comparator = q.comparator();
addAll(q);
} finally {
q = null;
}
}
/**
* Immutable snapshot spliterator that binds to elements "late".
*/
final class PBQSpliterator implements Spliterator {
Object[] array; // null until late-bound-initialized
int index;
int fence;
PBQSpliterator() {}
PBQSpliterator(Object[] array, int index, int fence) {
this.array = array;
this.index = index;
this.fence = fence;
}
private int getFence() {
if (array == null)
fence = (array = toArray()).length;
return fence;
}
public PBQSpliterator trySplit() {
int hi = getFence(), lo = index, mid = (lo + hi) >>> 1;
return (lo >= mid) ? null :
new PBQSpliterator(array, lo, index = mid);
}
public void forEachRemaining(Consumer super E> action) {
Objects.requireNonNull(action);
final int hi = getFence(), lo = index;
final Object[] es = array;
index = hi; // ensure exhaustion
for (int i = lo; i < hi; i++)
action.accept((E) es[i]);
}
public boolean tryAdvance(Consumer super E> action) {
Objects.requireNonNull(action);
if (getFence() > index && index >= 0) {
action.accept((E) array[index++]);
return true;
}
return false;
}
public long estimateSize() { return getFence() - index; }
public int characteristics() {
return (Spliterator.NONNULL |
Spliterator.SIZED |
Spliterator.SUBSIZED);
}
}
/**
* Returns a {@link Spliterator} over the elements in this queue.
* The spliterator does not traverse elements in any particular order
* (the {@link Spliterator#ORDERED ORDERED} characteristic is not reported).
*
* The returned spliterator is
* weakly consistent.
*
*
The {@code Spliterator} reports {@link Spliterator#SIZED} and
* {@link Spliterator#NONNULL}.
*
* @implNote
* The {@code Spliterator} additionally reports {@link Spliterator#SUBSIZED}.
*
* @return a {@code Spliterator} over the elements in this queue
* @since 1.8
*/
public Spliterator spliterator() {
return new PBQSpliterator();
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public boolean removeIf(Predicate super E> filter) {
Objects.requireNonNull(filter);
return bulkRemove(filter);
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public boolean removeAll(Collection> c) {
Objects.requireNonNull(c);
return bulkRemove(e -> c.contains(e));
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public boolean retainAll(Collection> c) {
Objects.requireNonNull(c);
return bulkRemove(e -> !c.contains(e));
}
// A tiny bit set implementation
private static long[] nBits(int n) {
return new long[((n - 1) >> 6) + 1];
}
private static void setBit(long[] bits, int i) {
bits[i >> 6] |= 1L << i;
}
private static boolean isClear(long[] bits, int i) {
return (bits[i >> 6] & (1L << i)) == 0;
}
/** Implementation of bulk remove methods. */
private boolean bulkRemove(Predicate super E> filter) {
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Object[] es = queue;
final int end = size;
int i;
// Optimize for initial run of survivors
for (i = 0; i < end && !filter.test((E) es[i]); i++)
;
if (i >= end)
return false;
// Tolerate predicates that reentrantly access the
// collection for read, so traverse once to find elements
// to delete, a second pass to physically expunge.
final int beg = i;
final long[] deathRow = nBits(end - beg);
deathRow[0] = 1L; // set bit 0
for (i = beg + 1; i < end; i++)
if (filter.test((E) es[i]))
setBit(deathRow, i - beg);
int w = beg;
for (i = beg; i < end; i++)
if (isClear(deathRow, i - beg))
es[w++] = es[i];
for (i = size = w; i < end; i++)
es[i] = null;
heapify();
return true;
} finally {
lock.unlock();
}
}
/**
* @throws NullPointerException {@inheritDoc}
*/
public void forEach(Consumer super E> action) {
Objects.requireNonNull(action);
final ReentrantLock lock = this.lock;
lock.lock();
try {
final Object[] es = queue;
for (int i = 0, n = size; i < n; i++)
action.accept((E) es[i]);
} finally {
lock.unlock();
}
}
// VarHandle mechanics
private static final VarHandle ALLOCATIONSPINLOCK;
static {
try {
MethodHandles.Lookup l = MethodHandles.lookup();
ALLOCATIONSPINLOCK = l.findVarHandle(PriorityBlockingQueue.class,
"allocationSpinLock",
int.class);
} catch (ReflectiveOperationException e) {
throw new ExceptionInInitializerError(e);
}
}
}