META-INF.modules.java.base.classes.java.util.stream.IntPipeline Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java.base Show documentation
Show all versions of java.base Show documentation
Bytecoder java.base Module
/*
* Copyright (c) 2012, 2017, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package java.util.stream;
import java.util.IntSummaryStatistics;
import java.util.Objects;
import java.util.OptionalDouble;
import java.util.OptionalInt;
import java.util.PrimitiveIterator;
import java.util.Spliterator;
import java.util.Spliterators;
import java.util.function.BiConsumer;
import java.util.function.BinaryOperator;
import java.util.function.IntBinaryOperator;
import java.util.function.IntConsumer;
import java.util.function.IntFunction;
import java.util.function.IntPredicate;
import java.util.function.IntToDoubleFunction;
import java.util.function.IntToLongFunction;
import java.util.function.IntUnaryOperator;
import java.util.function.ObjIntConsumer;
import java.util.function.Supplier;
/**
* Abstract base class for an intermediate pipeline stage or pipeline source
* stage implementing whose elements are of type {@code int}.
*
* @param type of elements in the upstream source
* @since 1.8
*/
abstract class IntPipeline
extends AbstractPipeline
implements IntStream {
/**
* Constructor for the head of a stream pipeline.
*
* @param source {@code Supplier} describing the stream source
* @param sourceFlags The source flags for the stream source, described in
* {@link StreamOpFlag}
* @param parallel {@code true} if the pipeline is parallel
*/
IntPipeline(Supplier extends Spliterator> source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
/**
* Constructor for the head of a stream pipeline.
*
* @param source {@code Spliterator} describing the stream source
* @param sourceFlags The source flags for the stream source, described in
* {@link StreamOpFlag}
* @param parallel {@code true} if the pipeline is parallel
*/
IntPipeline(Spliterator source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
/**
* Constructor for appending an intermediate operation onto an existing
* pipeline.
*
* @param upstream the upstream element source
* @param opFlags the operation flags for the new operation
*/
IntPipeline(AbstractPipeline, E_IN, ?> upstream, int opFlags) {
super(upstream, opFlags);
}
/**
* Adapt a {@code Sink to an {@code IntConsumer}, ideally simply
* by casting.
*/
private static IntConsumer adapt(Sink sink) {
if (sink instanceof IntConsumer) {
return (IntConsumer) sink;
}
else {
if (Tripwire.ENABLED)
Tripwire.trip(AbstractPipeline.class,
"using IntStream.adapt(Sink s)");
return sink::accept;
}
}
/**
* Adapt a {@code Spliterator} to a {@code Spliterator.OfInt}.
*
* @implNote
* The implementation attempts to cast to a Spliterator.OfInt, and throws an
* exception if this cast is not possible.
*/
private static Spliterator.OfInt adapt(Spliterator s) {
if (s instanceof Spliterator.OfInt) {
return (Spliterator.OfInt) s;
}
else {
if (Tripwire.ENABLED)
Tripwire.trip(AbstractPipeline.class,
"using IntStream.adapt(Spliterator s)");
throw new UnsupportedOperationException("IntStream.adapt(Spliterator s)");
}
}
// Shape-specific methods
@Override
final StreamShape getOutputShape() {
return StreamShape.INT_VALUE;
}
@Override
final Node evaluateToNode(PipelineHelper helper,
Spliterator spliterator,
boolean flattenTree,
IntFunction generator) {
return Nodes.collectInt(helper, spliterator, flattenTree);
}
@Override
final Spliterator wrap(PipelineHelper ph,
Supplier> supplier,
boolean isParallel) {
return new StreamSpliterators.IntWrappingSpliterator<>(ph, supplier, isParallel);
}
@Override
@SuppressWarnings("unchecked")
final Spliterator.OfInt lazySpliterator(Supplier extends Spliterator> supplier) {
return new StreamSpliterators.DelegatingSpliterator.OfInt((Supplier) supplier);
}
@Override
final boolean forEachWithCancel(Spliterator spliterator, Sink sink) {
Spliterator.OfInt spl = adapt(spliterator);
IntConsumer adaptedSink = adapt(sink);
boolean cancelled;
do { } while (!(cancelled = sink.cancellationRequested()) && spl.tryAdvance(adaptedSink));
return cancelled;
}
@Override
final Node.Builder makeNodeBuilder(long exactSizeIfKnown,
IntFunction generator) {
return Nodes.intBuilder(exactSizeIfKnown);
}
private Stream mapToObj(IntFunction extends U> mapper, int opFlags) {
return new ReferencePipeline.StatelessOp(this, StreamShape.INT_VALUE, opFlags) {
@Override
Sink opWrapSink(int flags, Sink sink) {
return new Sink.ChainedInt(sink) {
@Override
public void accept(int t) {
downstream.accept(mapper.apply(t));
}
};
}
};
}
// IntStream
@Override
public final PrimitiveIterator.OfInt iterator() {
return Spliterators.iterator(spliterator());
}
@Override
public final Spliterator.OfInt spliterator() {
return adapt(super.spliterator());
}
// Stateless intermediate ops from IntStream
@Override
public final LongStream asLongStream() {
return new LongPipeline.StatelessOp(this, StreamShape.INT_VALUE, 0) {
@Override
Sink opWrapSink(int flags, Sink sink) {
return new Sink.ChainedInt(sink) {
@Override
public void accept(int t) {
downstream.accept((long) t);
}
};
}
};
}
@Override
public final DoubleStream asDoubleStream() {
return new DoublePipeline.StatelessOp(this, StreamShape.INT_VALUE, 0) {
@Override
Sink opWrapSink(int flags, Sink sink) {
return new Sink.ChainedInt(sink) {
@Override
public void accept(int t) {
downstream.accept((double) t);
}
};
}
};
}
@Override
public final Stream boxed() {
return mapToObj(Integer::valueOf, 0);
}
@Override
public final IntStream map(IntUnaryOperator mapper) {
Objects.requireNonNull(mapper);
return new StatelessOp(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink opWrapSink(int flags, Sink sink) {
return new Sink.ChainedInt(sink) {
@Override
public void accept(int t) {
downstream.accept(mapper.applyAsInt(t));
}
};
}
};
}
@Override
public final Stream mapToObj(IntFunction extends U> mapper) {
Objects.requireNonNull(mapper);
return mapToObj(mapper, StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT);
}
@Override
public final LongStream mapToLong(IntToLongFunction mapper) {
Objects.requireNonNull(mapper);
return new LongPipeline.StatelessOp(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink opWrapSink(int flags, Sink sink) {
return new Sink.ChainedInt(sink) {
@Override
public void accept(int t) {
downstream.accept(mapper.applyAsLong(t));
}
};
}
};
}
@Override
public final DoubleStream mapToDouble(IntToDoubleFunction mapper) {
Objects.requireNonNull(mapper);
return new DoublePipeline.StatelessOp(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT) {
@Override
Sink opWrapSink(int flags, Sink sink) {
return new Sink.ChainedInt(sink) {
@Override
public void accept(int t) {
downstream.accept(mapper.applyAsDouble(t));
}
};
}
};
}
@Override
public final IntStream flatMap(IntFunction extends IntStream> mapper) {
Objects.requireNonNull(mapper);
return new StatelessOp(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SORTED | StreamOpFlag.NOT_DISTINCT | StreamOpFlag.NOT_SIZED) {
@Override
Sink opWrapSink(int flags, Sink sink) {
return new Sink.ChainedInt(sink) {
// true if cancellationRequested() has been called
boolean cancellationRequestedCalled;
// cache the consumer to avoid creation on every accepted element
IntConsumer downstreamAsInt = downstream::accept;
@Override
public void begin(long size) {
downstream.begin(-1);
}
@Override
public void accept(int t) {
try (IntStream result = mapper.apply(t)) {
if (result != null) {
if (!cancellationRequestedCalled) {
result.sequential().forEach(downstreamAsInt);
}
else {
var s = result.sequential().spliterator();
do { } while (!downstream.cancellationRequested() && s.tryAdvance(downstreamAsInt));
}
}
}
}
@Override
public boolean cancellationRequested() {
// If this method is called then an operation within the stream
// pipeline is short-circuiting (see AbstractPipeline.copyInto).
// Note that we cannot differentiate between an upstream or
// downstream operation
cancellationRequestedCalled = true;
return downstream.cancellationRequested();
}
};
}
};
}
@Override
public IntStream unordered() {
if (!isOrdered())
return this;
return new StatelessOp(this, StreamShape.INT_VALUE, StreamOpFlag.NOT_ORDERED) {
@Override
Sink opWrapSink(int flags, Sink sink) {
return sink;
}
};
}
@Override
public final IntStream filter(IntPredicate predicate) {
Objects.requireNonNull(predicate);
return new StatelessOp(this, StreamShape.INT_VALUE,
StreamOpFlag.NOT_SIZED) {
@Override
Sink opWrapSink(int flags, Sink sink) {
return new Sink.ChainedInt(sink) {
@Override
public void begin(long size) {
downstream.begin(-1);
}
@Override
public void accept(int t) {
if (predicate.test(t))
downstream.accept(t);
}
};
}
};
}
@Override
public final IntStream peek(IntConsumer action) {
Objects.requireNonNull(action);
return new StatelessOp(this, StreamShape.INT_VALUE,
0) {
@Override
Sink opWrapSink(int flags, Sink sink) {
return new Sink.ChainedInt(sink) {
@Override
public void accept(int t) {
action.accept(t);
downstream.accept(t);
}
};
}
};
}
// Stateful intermediate ops from IntStream
@Override
public final IntStream limit(long maxSize) {
if (maxSize < 0)
throw new IllegalArgumentException(Long.toString(maxSize));
return SliceOps.makeInt(this, 0, maxSize);
}
@Override
public final IntStream skip(long n) {
if (n < 0)
throw new IllegalArgumentException(Long.toString(n));
if (n == 0)
return this;
else
return SliceOps.makeInt(this, n, -1);
}
@Override
public final IntStream takeWhile(IntPredicate predicate) {
return WhileOps.makeTakeWhileInt(this, predicate);
}
@Override
public final IntStream dropWhile(IntPredicate predicate) {
return WhileOps.makeDropWhileInt(this, predicate);
}
@Override
public final IntStream sorted() {
return SortedOps.makeInt(this);
}
@Override
public final IntStream distinct() {
// While functional and quick to implement, this approach is not very efficient.
// An efficient version requires an int-specific map/set implementation.
return boxed().distinct().mapToInt(i -> i);
}
// Terminal ops from IntStream
@Override
public void forEach(IntConsumer action) {
evaluate(ForEachOps.makeInt(action, false));
}
@Override
public void forEachOrdered(IntConsumer action) {
evaluate(ForEachOps.makeInt(action, true));
}
@Override
public final int sum() {
return reduce(0, Integer::sum);
}
@Override
public final OptionalInt min() {
return reduce(Math::min);
}
@Override
public final OptionalInt max() {
return reduce(Math::max);
}
@Override
public final long count() {
return evaluate(ReduceOps.makeIntCounting());
}
@Override
public final OptionalDouble average() {
long[] avg = collect(() -> new long[2],
(ll, i) -> {
ll[0]++;
ll[1] += i;
},
(ll, rr) -> {
ll[0] += rr[0];
ll[1] += rr[1];
});
return avg[0] > 0
? OptionalDouble.of((double) avg[1] / avg[0])
: OptionalDouble.empty();
}
@Override
public final IntSummaryStatistics summaryStatistics() {
return collect(IntSummaryStatistics::new, IntSummaryStatistics::accept,
IntSummaryStatistics::combine);
}
@Override
public final int reduce(int identity, IntBinaryOperator op) {
return evaluate(ReduceOps.makeInt(identity, op));
}
@Override
public final OptionalInt reduce(IntBinaryOperator op) {
return evaluate(ReduceOps.makeInt(op));
}
@Override
public final R collect(Supplier supplier,
ObjIntConsumer accumulator,
BiConsumer combiner) {
Objects.requireNonNull(combiner);
BinaryOperator operator = (left, right) -> {
combiner.accept(left, right);
return left;
};
return evaluate(ReduceOps.makeInt(supplier, accumulator, operator));
}
@Override
public final boolean anyMatch(IntPredicate predicate) {
return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ANY));
}
@Override
public final boolean allMatch(IntPredicate predicate) {
return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.ALL));
}
@Override
public final boolean noneMatch(IntPredicate predicate) {
return evaluate(MatchOps.makeInt(predicate, MatchOps.MatchKind.NONE));
}
@Override
public final OptionalInt findFirst() {
return evaluate(FindOps.makeInt(true));
}
@Override
public final OptionalInt findAny() {
return evaluate(FindOps.makeInt(false));
}
@Override
public final int[] toArray() {
return Nodes.flattenInt((Node.OfInt) evaluateToArrayNode(Integer[]::new))
.asPrimitiveArray();
}
//
/**
* Source stage of an IntStream.
*
* @param type of elements in the upstream source
* @since 1.8
*/
static class Head extends IntPipeline {
/**
* Constructor for the source stage of an IntStream.
*
* @param source {@code Supplier} describing the stream
* source
* @param sourceFlags the source flags for the stream source, described
* in {@link StreamOpFlag}
* @param parallel {@code true} if the pipeline is parallel
*/
Head(Supplier extends Spliterator> source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
/**
* Constructor for the source stage of an IntStream.
*
* @param source {@code Spliterator} describing the stream source
* @param sourceFlags the source flags for the stream source, described
* in {@link StreamOpFlag}
* @param parallel {@code true} if the pipeline is parallel
*/
Head(Spliterator source,
int sourceFlags, boolean parallel) {
super(source, sourceFlags, parallel);
}
@Override
final boolean opIsStateful() {
throw new UnsupportedOperationException();
}
@Override
final Sink opWrapSink(int flags, Sink sink) {
throw new UnsupportedOperationException();
}
// Optimized sequential terminal operations for the head of the pipeline
@Override
public void forEach(IntConsumer action) {
if (!isParallel()) {
adapt(sourceStageSpliterator()).forEachRemaining(action);
}
else {
super.forEach(action);
}
}
@Override
public void forEachOrdered(IntConsumer action) {
if (!isParallel()) {
adapt(sourceStageSpliterator()).forEachRemaining(action);
}
else {
super.forEachOrdered(action);
}
}
}
/**
* Base class for a stateless intermediate stage of an IntStream
*
* @param type of elements in the upstream source
* @since 1.8
*/
abstract static class StatelessOp extends IntPipeline {
/**
* Construct a new IntStream by appending a stateless intermediate
* operation to an existing stream.
* @param upstream The upstream pipeline stage
* @param inputShape The stream shape for the upstream pipeline stage
* @param opFlags Operation flags for the new stage
*/
StatelessOp(AbstractPipeline, E_IN, ?> upstream,
StreamShape inputShape,
int opFlags) {
super(upstream, opFlags);
assert upstream.getOutputShape() == inputShape;
}
@Override
final boolean opIsStateful() {
return false;
}
}
/**
* Base class for a stateful intermediate stage of an IntStream.
*
* @param type of elements in the upstream source
* @since 1.8
*/
abstract static class StatefulOp extends IntPipeline {
/**
* Construct a new IntStream by appending a stateful intermediate
* operation to an existing stream.
* @param upstream The upstream pipeline stage
* @param inputShape The stream shape for the upstream pipeline stage
* @param opFlags Operation flags for the new stage
*/
StatefulOp(AbstractPipeline, E_IN, ?> upstream,
StreamShape inputShape,
int opFlags) {
super(upstream, opFlags);
assert upstream.getOutputShape() == inputShape;
}
@Override
final boolean opIsStateful() {
return true;
}
@Override
abstract Node opEvaluateParallel(PipelineHelper helper,
Spliterator spliterator,
IntFunction generator);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy