All Downloads are FREE. Search and download functionalities are using the official Maven repository.

META-INF.modules.java.base.classes.sun.security.provider.SHA5 Maven / Gradle / Ivy

There is a newer version: 2024-05-10
Show newest version
/*
 * Copyright (c) 2002, 2016, Oracle and/or its affiliates. All rights reserved.
 * DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
 *
 * This code is free software; you can redistribute it and/or modify it
 * under the terms of the GNU General Public License version 2 only, as
 * published by the Free Software Foundation.  Oracle designates this
 * particular file as subject to the "Classpath" exception as provided
 * by Oracle in the LICENSE file that accompanied this code.
 *
 * This code is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License
 * version 2 for more details (a copy is included in the LICENSE file that
 * accompanied this code).
 *
 * You should have received a copy of the GNU General Public License version
 * 2 along with this work; if not, write to the Free Software Foundation,
 * Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 * Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
 * or visit www.oracle.com if you need additional information or have any
 * questions.
 */

package sun.security.provider;

import java.util.Arrays;
import java.util.Objects;

import jdk.internal.HotSpotIntrinsicCandidate;
import static sun.security.provider.ByteArrayAccess.*;

/**
 * This class implements the Secure Hash Algorithm SHA-384 and SHA-512
 * developed by the National Institute of Standards and Technology along
 * with the National Security Agency.
 *
 * The two algorithms are almost identical. This file contains a base
 * class SHA5 and two nested static subclasses as the classes to be used
 * by the JCA framework.
 *
 * 

It implements java.security.MessageDigestSpi, and can be used * through Java Cryptography Architecture (JCA), as a pluggable * MessageDigest implementation. * * @since 1.4.2 * @author Valerie Peng * @author Andreas Sterbenz */ abstract class SHA5 extends DigestBase { private static final int ITERATION = 80; // Constants for each round/iteration private static final long[] ROUND_CONSTS = { 0x428A2F98D728AE22L, 0x7137449123EF65CDL, 0xB5C0FBCFEC4D3B2FL, 0xE9B5DBA58189DBBCL, 0x3956C25BF348B538L, 0x59F111F1B605D019L, 0x923F82A4AF194F9BL, 0xAB1C5ED5DA6D8118L, 0xD807AA98A3030242L, 0x12835B0145706FBEL, 0x243185BE4EE4B28CL, 0x550C7DC3D5FFB4E2L, 0x72BE5D74F27B896FL, 0x80DEB1FE3B1696B1L, 0x9BDC06A725C71235L, 0xC19BF174CF692694L, 0xE49B69C19EF14AD2L, 0xEFBE4786384F25E3L, 0x0FC19DC68B8CD5B5L, 0x240CA1CC77AC9C65L, 0x2DE92C6F592B0275L, 0x4A7484AA6EA6E483L, 0x5CB0A9DCBD41FBD4L, 0x76F988DA831153B5L, 0x983E5152EE66DFABL, 0xA831C66D2DB43210L, 0xB00327C898FB213FL, 0xBF597FC7BEEF0EE4L, 0xC6E00BF33DA88FC2L, 0xD5A79147930AA725L, 0x06CA6351E003826FL, 0x142929670A0E6E70L, 0x27B70A8546D22FFCL, 0x2E1B21385C26C926L, 0x4D2C6DFC5AC42AEDL, 0x53380D139D95B3DFL, 0x650A73548BAF63DEL, 0x766A0ABB3C77B2A8L, 0x81C2C92E47EDAEE6L, 0x92722C851482353BL, 0xA2BFE8A14CF10364L, 0xA81A664BBC423001L, 0xC24B8B70D0F89791L, 0xC76C51A30654BE30L, 0xD192E819D6EF5218L, 0xD69906245565A910L, 0xF40E35855771202AL, 0x106AA07032BBD1B8L, 0x19A4C116B8D2D0C8L, 0x1E376C085141AB53L, 0x2748774CDF8EEB99L, 0x34B0BCB5E19B48A8L, 0x391C0CB3C5C95A63L, 0x4ED8AA4AE3418ACBL, 0x5B9CCA4F7763E373L, 0x682E6FF3D6B2B8A3L, 0x748F82EE5DEFB2FCL, 0x78A5636F43172F60L, 0x84C87814A1F0AB72L, 0x8CC702081A6439ECL, 0x90BEFFFA23631E28L, 0xA4506CEBDE82BDE9L, 0xBEF9A3F7B2C67915L, 0xC67178F2E372532BL, 0xCA273ECEEA26619CL, 0xD186B8C721C0C207L, 0xEADA7DD6CDE0EB1EL, 0xF57D4F7FEE6ED178L, 0x06F067AA72176FBAL, 0x0A637DC5A2C898A6L, 0x113F9804BEF90DAEL, 0x1B710B35131C471BL, 0x28DB77F523047D84L, 0x32CAAB7B40C72493L, 0x3C9EBE0A15C9BEBCL, 0x431D67C49C100D4CL, 0x4CC5D4BECB3E42B6L, 0x597F299CFC657E2AL, 0x5FCB6FAB3AD6FAECL, 0x6C44198C4A475817L }; // buffer used by implCompress() private long[] W; // state of this object private long[] state; // initial state value. different between SHA-384 and SHA-512 private final long[] initialHashes; /** * Creates a new SHA object. */ SHA5(String name, int digestLength, long[] initialHashes) { super(name, digestLength, 128); this.initialHashes = initialHashes; state = new long[8]; W = new long[80]; resetHashes(); } final void implReset() { resetHashes(); Arrays.fill(W, 0L); } private void resetHashes() { System.arraycopy(initialHashes, 0, state, 0, state.length); } final void implDigest(byte[] out, int ofs) { long bitsProcessed = bytesProcessed << 3; int index = (int)bytesProcessed & 0x7f; int padLen = (index < 112) ? (112 - index) : (240 - index); engineUpdate(padding, 0, padLen + 8); i2bBig4((int)(bitsProcessed >>> 32), buffer, 120); i2bBig4((int)bitsProcessed, buffer, 124); implCompress(buffer, 0); int len = engineGetDigestLength(); if (len == 28) { // Special case for SHA-512/224 l2bBig(state, 0, out, ofs, 24); i2bBig4((int)(state[3] >> 32), out, ofs + 24); } else { l2bBig(state, 0, out, ofs, len); } } /** * logical function ch(x,y,z) as defined in spec: * @return (x and y) xor ((complement x) and z) * @param x long * @param y long * @param z long */ private static long lf_ch(long x, long y, long z) { return (x & y) ^ ((~x) & z); } /** * logical function maj(x,y,z) as defined in spec: * @return (x and y) xor (x and z) xor (y and z) * @param x long * @param y long * @param z long */ private static long lf_maj(long x, long y, long z) { return (x & y) ^ (x & z) ^ (y & z); } /** * logical function R(x,s) - right shift * @return x right shift for s times * @param x long * @param s int */ private static long lf_R(long x, int s) { return (x >>> s); } /** * logical function S(x,s) - right rotation * @return x circular right shift for s times * @param x long * @param s int */ private static long lf_S(long x, int s) { return (x >>> s) | (x << (64 - s)); } /** * logical function sigma0(x) - xor of results of right rotations * @return S(x,28) xor S(x,34) xor S(x,39) * @param x long */ private static long lf_sigma0(long x) { return lf_S(x, 28) ^ lf_S(x, 34) ^ lf_S(x, 39); } /** * logical function sigma1(x) - xor of results of right rotations * @return S(x,14) xor S(x,18) xor S(x,41) * @param x long */ private static long lf_sigma1(long x) { return lf_S(x, 14) ^ lf_S(x, 18) ^ lf_S(x, 41); } /** * logical function delta0(x) - xor of results of right shifts/rotations * @return long * @param x long */ private static long lf_delta0(long x) { return lf_S(x, 1) ^ lf_S(x, 8) ^ lf_R(x, 7); } /** * logical function delta1(x) - xor of results of right shifts/rotations * @return long * @param x long */ private static long lf_delta1(long x) { return lf_S(x, 19) ^ lf_S(x, 61) ^ lf_R(x, 6); } /** * Compute the hash for the current block. * * This is in the same vein as Peter Gutmann's algorithm listed in * the back of Applied Cryptography, Compact implementation of * "old" NIST Secure Hash Algorithm. */ final void implCompress(byte[] buf, int ofs) { implCompressCheck(buf, ofs); implCompress0(buf, ofs); } private void implCompressCheck(byte[] buf, int ofs) { Objects.requireNonNull(buf); // The checks performed by the method 'b2iBig128' // are sufficient for the case when the method // 'implCompressImpl' is replaced with a compiler // intrinsic. b2lBig128(buf, ofs, W); } // The method 'implCompressImpl' seems not to use its parameters. // The method can, however, be replaced with a compiler intrinsic // that operates directly on the array 'buf' (starting from // offset 'ofs') and not on array 'W', therefore 'buf' and 'ofs' // must be passed as parameter to the method. @HotSpotIntrinsicCandidate private final void implCompress0(byte[] buf, int ofs) { // The first 16 longs are from the byte stream, compute the rest of // the W[]'s for (int t = 16; t < ITERATION; t++) { W[t] = lf_delta1(W[t-2]) + W[t-7] + lf_delta0(W[t-15]) + W[t-16]; } long a = state[0]; long b = state[1]; long c = state[2]; long d = state[3]; long e = state[4]; long f = state[5]; long g = state[6]; long h = state[7]; for (int i = 0; i < ITERATION; i++) { long T1 = h + lf_sigma1(e) + lf_ch(e,f,g) + ROUND_CONSTS[i] + W[i]; long T2 = lf_sigma0(a) + lf_maj(a,b,c); h = g; g = f; f = e; e = d + T1; d = c; c = b; b = a; a = T1 + T2; } state[0] += a; state[1] += b; state[2] += c; state[3] += d; state[4] += e; state[5] += f; state[6] += g; state[7] += h; } public Object clone() throws CloneNotSupportedException { SHA5 copy = (SHA5) super.clone(); copy.state = copy.state.clone(); copy.W = new long[80]; return copy; } /** * SHA-512 implementation class. */ public static final class SHA512 extends SHA5 { private static final long[] INITIAL_HASHES = { 0x6a09e667f3bcc908L, 0xbb67ae8584caa73bL, 0x3c6ef372fe94f82bL, 0xa54ff53a5f1d36f1L, 0x510e527fade682d1L, 0x9b05688c2b3e6c1fL, 0x1f83d9abfb41bd6bL, 0x5be0cd19137e2179L }; public SHA512() { super("SHA-512", 64, INITIAL_HASHES); } } /** * SHA-384 implementation class. */ public static final class SHA384 extends SHA5 { private static final long[] INITIAL_HASHES = { 0xcbbb9d5dc1059ed8L, 0x629a292a367cd507L, 0x9159015a3070dd17L, 0x152fecd8f70e5939L, 0x67332667ffc00b31L, 0x8eb44a8768581511L, 0xdb0c2e0d64f98fa7L, 0x47b5481dbefa4fa4L }; public SHA384() { super("SHA-384", 48, INITIAL_HASHES); } } public static final class SHA512_224 extends SHA5 { private static final long[] INITIAL_HASHES = { 0x8C3D37C819544DA2L, 0x73E1996689DCD4D6L, 0x1DFAB7AE32FF9C82L, 0x679DD514582F9FCFL, 0x0F6D2B697BD44DA8L, 0x77E36F7304C48942L, 0x3F9D85A86A1D36C8L, 0x1112E6AD91D692A1L }; public SHA512_224() { super("SHA-512/224", 28, INITIAL_HASHES); } } public static final class SHA512_256 extends SHA5 { private static final long[] INITIAL_HASHES = { 0x22312194FC2BF72CL, 0x9F555FA3C84C64C2L, 0x2393B86B6F53B151L, 0x963877195940EABDL, 0x96283EE2A88EFFE3L, 0xBE5E1E2553863992L, 0x2B0199FC2C85B8AAL, 0x0EB72DDC81C52CA2L }; public SHA512_256() { super("SHA-512/256", 32, INITIAL_HASHES); } } }





© 2015 - 2025 Weber Informatics LLC | Privacy Policy