META-INF.modules.java.base.classes.sun.util.calendar.CalendarUtils Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of java.base Show documentation
Show all versions of java.base Show documentation
Bytecoder java.base Module
/*
* Copyright (c) 2003, Oracle and/or its affiliates. All rights reserved.
* DO NOT ALTER OR REMOVE COPYRIGHT NOTICES OR THIS FILE HEADER.
*
* This code is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 only, as
* published by the Free Software Foundation. Oracle designates this
* particular file as subject to the "Classpath" exception as provided
* by Oracle in the LICENSE file that accompanied this code.
*
* This code is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
* version 2 for more details (a copy is included in the LICENSE file that
* accompanied this code).
*
* You should have received a copy of the GNU General Public License version
* 2 along with this work; if not, write to the Free Software Foundation,
* Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
*
* Please contact Oracle, 500 Oracle Parkway, Redwood Shores, CA 94065 USA
* or visit www.oracle.com if you need additional information or have any
* questions.
*/
package sun.util.calendar;
import java.util.HashMap;
import java.util.Map;
public class CalendarUtils {
/**
* Returns whether the specified year is a leap year in the Gregorian
* calendar system.
*
* @param gregorianYear a Gregorian calendar year
* @return true if the given year is a leap year in the Gregorian
* calendar system.
* @see CalendarDate#isLeapYear
*/
public static final boolean isGregorianLeapYear(int gregorianYear) {
return (((gregorianYear % 4) == 0)
&& (((gregorianYear % 100) != 0) || ((gregorianYear % 400) == 0)));
}
/**
* Returns whether the specified year is a leap year in the Julian
* calendar system. The year number must be a normalized one
* (e.g., 45 B.C.E. is 1-45).
*
* @param normalizedJulianYear a normalized Julian calendar year
* @return true if the given year is a leap year in the Julian
* calendar system.
* @see CalendarDate#isLeapYear
*/
public static final boolean isJulianLeapYear(int normalizedJulianYear) {
return (normalizedJulianYear % 4) == 0;
}
/**
* Divides two integers and returns the floor of the quotient.
* For example, floorDivide(-1, 4)
returns -1 while
* -1/4 is 0.
*
* @param n the numerator
* @param d a divisor that must be greater than 0
* @return the floor of the quotient
*/
public static final long floorDivide(long n, long d) {
return ((n >= 0) ?
(n / d) : (((n + 1L) / d) - 1L));
}
/**
* Divides two integers and returns the floor of the quotient.
* For example, floorDivide(-1, 4)
returns -1 while
* -1/4 is 0.
*
* @param n the numerator
* @param d a divisor that must be greater than 0
* @return the floor of the quotient
*/
public static final int floorDivide(int n, int d) {
return ((n >= 0) ?
(n / d) : (((n + 1) / d) - 1));
}
/**
* Divides two integers and returns the floor of the quotient and
* the modulus remainder. For example,
* floorDivide(-1,4)
returns -1
with
* 3
as its remainder, while -1/4
is
* 0
and -1%4
is -1
.
*
* @param n the numerator
* @param d a divisor which must be {@literal > 0}
* @param r an array of at least one element in which the value
* mod(n, d)
is returned.
* @return the floor of the quotient.
*/
public static final int floorDivide(int n, int d, int[] r) {
if (n >= 0) {
r[0] = n % d;
return n / d;
}
int q = ((n + 1) / d) - 1;
r[0] = n - (q * d);
return q;
}
/**
* Divides two integers and returns the floor of the quotient and
* the modulus remainder. For example,
* floorDivide(-1,4)
returns -1
with
* 3
as its remainder, while -1/4
is
* 0
and -1%4
is -1
.
*
* @param n the numerator
* @param d a divisor which must be {@literal > 0}
* @param r an array of at least one element in which the value
* mod(n, d)
is returned.
* @return the floor of the quotient.
*/
public static final int floorDivide(long n, int d, int[] r) {
if (n >= 0) {
r[0] = (int)(n % d);
return (int)(n / d);
}
int q = (int)(((n + 1) / d) - 1);
r[0] = (int)(n - (q * d));
return q;
}
public static final long mod(long x, long y) {
return (x - y * floorDivide(x, y));
}
public static final int mod(int x, int y) {
return (x - y * floorDivide(x, y));
}
public static final int amod(int x, int y) {
int z = mod(x, y);
return (z == 0) ? y : z;
}
public static final long amod(long x, long y) {
long z = mod(x, y);
return (z == 0) ? y : z;
}
/**
* Mimics sprintf(buf, "%0*d", decaimal, width).
*/
public static final StringBuilder sprintf0d(StringBuilder sb, int value, int width) {
long d = value;
if (d < 0) {
sb.append('-');
d = -d;
--width;
}
int n = 10;
for (int i = 2; i < width; i++) {
n *= 10;
}
for (int i = 1; i < width && d < n; i++) {
sb.append('0');
n /= 10;
}
sb.append(d);
return sb;
}
public static final StringBuffer sprintf0d(StringBuffer sb, int value, int width) {
long d = value;
if (d < 0) {
sb.append('-');
d = -d;
--width;
}
int n = 10;
for (int i = 2; i < width; i++) {
n *= 10;
}
for (int i = 1; i < width && d < n; i++) {
sb.append('0');
n /= 10;
}
sb.append(d);
return sb;
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy