All Downloads are FREE. Search and download functionalities are using the official Maven repository.

eva2.optimization.operator.selection.probability.SelProbRanking Maven / Gradle / Ivy

Go to download

Gradle plugin that provides tasks for configuring and uploading artifacts to Sonatype Nexus.

The newest version!
package eva2.optimization.operator.selection.probability;

import eva2.optimization.population.Population;
import eva2.util.annotation.Description;

/**
 * Ranking for calculating the selection probability.
 * This truly scaling invariant.
 */
@Description("This is ranking normation.")
public class SelProbRanking extends AbstractSelProb implements java.io.Serializable {

    public SelProbRanking() {
    }

    public SelProbRanking(SelProbRanking a) {
    }

    @Override
    public Object clone() {
        return new SelProbRanking(this);
    }

    /**
     * This method computes the selection probability for each individual
     * in the population. Note: Summed over the complete population the selection
     * probability sums up to one.
     *
     * @param population The population to compute.
     * @param data       The input as double[][]
     */
    @Override
    public void computeSelectionProbability(Population population, double[][] data, boolean obeyConst) {
        double sum = 0;
        double[] result = new double[data.length];

        if (obeyConst) {
            for (int x = 0; x < data[0].length; x++) {
                sum = 0;
                for (int i = 0; i < result.length; i++) {
                    result[i] = 0;
                }
                for (int i = 0; i < data.length; i++) {
                    data[i][x] = -data[i][x];
                }
                for (int i = 0; i < data.length; i++) {
                    for (int j = i + 1; j < data.length; j++) {
                        if (!(population.get(i).violatesConstraint()) && (!population.get(j).violatesConstraint())) {
                            // no one violates, therefore it is up to the data to decied
                            if (data[j][x] < data[i][x]) {
                                result[i]++;
                            } else {
                                result[j]++;
                            }
                        } else {
                            // at least one violates, so the constraint violation is to decide
                            if (population.get(j).getConstraintViolation() < population.get(i).getConstraintViolation()) {
                                result[j]++;
                            } else {
                                result[i]++;
                            }
                        }
                    }
                }

                for (int i = 0; i < result.length; i++) {
                    sum += result[i];
                }

                for (int i = 0; i < population.size(); i++) {
                    population.get(i).setSelectionProbability(x, result[i] / sum);
                }
            }
        } else {
            for (int x = 0; x < data[0].length; x++) {
                sum = 0;
                for (int i = 0; i < result.length; i++) {
                    result[i] = 0;
                }
                for (int i = 0; i < data.length; i++) {
                    data[i][x] = -data[i][x];
                }
                for (int i = 0; i < data.length; i++) {
                    for (int j = i + 1; j < data.length; j++) {
                        if (data[j][x] < data[i][x]) {
                            result[i]++;
                        } else {
                            result[j]++;
                        }
                    }
                }

                for (int i = 0; i < result.length; i++) {
                    sum += result[i];
                }

                for (int i = 0; i < population.size(); i++) {
                    population.get(i).setSelectionProbability(x, result[i] / sum);
                }
            }
        }
    }

    /**
     * This method will return a naming String
     *
     * @return The name of the algorithm
     */
    public String getName() {
        return "Ranking";
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy