de.rub.nds.protocol.crypto.ec.FieldElementF2m Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of protocol-attacker Show documentation
Show all versions of protocol-attacker Show documentation
Protocol-Attacker is a framework for the creation of protocol analysis tools
/*
* Protocol-Attacker - A Framework to create Protocol Analysis Tools
*
* Copyright 2023-2023 Ruhr University Bochum, Paderborn University, Technology Innovation Institute, and Hackmanit GmbH
*
* Licensed under Apache License, Version 2.0
* http://www.apache.org/licenses/LICENSE-2.0.txt
*/
package de.rub.nds.protocol.crypto.ec;
import java.math.BigInteger;
import org.apache.logging.log4j.LogManager;
import org.apache.logging.log4j.Logger;
/**
* An element of a galois field F_{2^m}.
* Please notice that every element in the field (and the reduction polynomial that defines the
* field) is represented by a binary polynomial.
* These polynomials are represented by BigInteger bit-strings, where the i-th bit represents the
* i-th coefficient.
*/
public class FieldElementF2m extends FieldElement {
@SuppressWarnings("unused")
private static final Logger LOGGER = LogManager.getLogger();
/**
* Instantiates an element of a galois field F{2^m}.
*
* @param data The binary polynomial representing the element.
* The degree must be smaller than the reduction polynomial's degree.
* @param modulus The binary reduction polynomial defining the field.
*/
public FieldElementF2m(BigInteger data, BigInteger modulus) {
super(data, modulus);
}
private FieldElementF2m() {
super(null, null);
}
@Override
public FieldElement add(FieldElement f) {
// Coefficients are added mod 2.
BigInteger tmp = this.getData().xor(f.getData());
return new FieldElementF2m(tmp, this.getModulus());
}
@Override
public FieldElement mult(FieldElement f) {
// Binary polynomial school book multiplication.
BigInteger thisData = this.getData();
BigInteger fieldData = f.getData();
BigInteger tmp = new BigInteger("0");
for (int i = 0; i < fieldData.bitLength(); i++) {
if (fieldData.testBit(i)) {
tmp = tmp.xor(thisData.shiftLeft(i));
}
}
tmp = this.reduce(tmp);
return new FieldElementF2m(tmp, this.getModulus());
}
@Override
public FieldElement addInv() {
/*
* The characteristic of F_{2^m} is 2. Therefore every element is it's own additive inverse. Like
* this.subtract(), this method is probably never needed.
*/
return this;
}
@Override
public FieldElement multInv() {
if (this.getData().equals(BigInteger.ZERO)) {
throw new ArithmeticException();
}
if (this.getData().equals(BigInteger.ONE)) {
return this;
}
// Polynomial EEA:
BigInteger r2 = this.getModulus();
BigInteger r1 = this.getData();
BigInteger t2 = new BigInteger("0");
BigInteger t1 = BigInteger.ONE;
do {
BigInteger[] division = this.polynomialDivision(r2, r1);
// r = r2 mod r1
BigInteger r = division[1];
// q = (r2 - r) / r1
BigInteger q = division[0];
// t = t2 - (t1 * q)
FieldElementF2m pointT1Polynomial = new FieldElementF2m(t1, this.getModulus());
FieldElementF2m pointQPolynomial = new FieldElementF2m(q, this.getModulus());
BigInteger t = pointT1Polynomial.mult(pointQPolynomial).getData();
t = this.reduce(t);
t = t2.xor(t);
t2 = t1;
t1 = t;
r2 = r1;
r1 = r;
} while (!r1.equals(BigInteger.ONE) && !r1.equals(BigInteger.ZERO));
// t1 * this.getData() == 1
return new FieldElementF2m(t1, this.getModulus());
}
/**
* Polynomial division f/p.
* Returns an BigInteger array representing the polynomials q and r with:
* q * p + r = f.
*
* @param f A BigInteger representing a binary polynomial.
* @param p A BigInteger representing a binary polynomial.
*/
private BigInteger[] polynomialDivision(BigInteger f, BigInteger p) {
int modLength = p.bitLength();
BigInteger q = new BigInteger("0");
while (f.bitLength() >= modLength && modLength != 0) {
BigInteger tmp = new BigInteger("1");
tmp = tmp.shiftLeft(f.bitLength() - modLength);
q = q.xor(tmp);
BigInteger shift = p.multiply(tmp);
f = f.xor(shift);
}
// q is the quotient.
// f is the remainder.
BigInteger[] result = {q, f};
return result;
}
/**
* Returns f mod this.getModulus().
*
* @param f A BigInteger representing a binary polynomial.
*/
private BigInteger reduce(BigInteger f) {
return this.polynomialDivision(f, this.getModulus())[1];
}
/**
* Returns (this^2)^exponent)
*
* @param exponent
*/
public FieldElementF2m squarePow(int exponent) {
FieldElement square = this.mult(this);
for (int i = 1; i < exponent; i++) {
square = square.mult(square);
}
return (FieldElementF2m) square;
}
}