de.sciss.fscape.stream.GramSchmidtMatrix.scala Maven / Gradle / Ivy
/*
* GramSchmidtMatrix.scala
* (FScape)
*
* Copyright (c) 2001-2016 Hanns Holger Rutz. All rights reserved.
*
* This software is published under the GNU General Public License v2+
*
*
* For further information, please contact Hanns Holger Rutz at
* [email protected]
*/
package de.sciss.fscape
package stream
import akka.stream.{Attributes, FanInShape4}
import de.sciss.fscape.stream.impl.{FilterIn4DImpl, FilterLogicImpl, StageImpl, NodeImpl, WindowedLogicImpl}
object GramSchmidtMatrix {
def apply(in: OutD, rows: OutI, columns: OutI, normalize: OutI)(implicit b: Builder): OutD = {
val stage0 = new Stage
val stage = b.add(stage0)
b.connect(in , stage.in0)
b.connect(rows , stage.in1)
b.connect(columns , stage.in2)
b.connect(normalize, stage.in3)
stage.out
}
private final val name = "GramSchmidtMatrix"
private type Shape = FanInShape4[BufD, BufI, BufI, BufI, BufD]
private final class Stage(implicit ctrl: Control) extends StageImpl[Shape](name) {
val shape = new FanInShape4(
in0 = InD (s"$name.in" ),
in1 = InI (s"$name.rows" ),
in2 = InI (s"$name.columns" ),
in3 = InI (s"$name.normalize"),
out = OutD(s"$name.out" )
)
def createLogic(attr: Attributes) = new Logic(shape)
}
private final class Logic(shape: Shape)(implicit ctrl: Control)
extends NodeImpl(name, shape)
with WindowedLogicImpl[Shape]
with FilterLogicImpl[BufD, Shape]
with FilterIn4DImpl[BufD, BufI, BufI, BufI] {
private[this] var winBuf : Array[Double] = _
private[this] var dotBuf : Array[Double] = _
private[this] var rows : Int = _
private[this] var columns : Int = _
private[this] var winSize : Int = _
private[this] var normalize : Boolean = _
protected def startNextWindow(inOff: Int): Int = {
val oldSize = winSize
if (bufIn1 != null && inOff < bufIn1.size) {
rows = math.max(1, bufIn1.buf(inOff))
}
if (bufIn2 != null && inOff < bufIn2.size) {
columns = math.max(1, bufIn2.buf(inOff))
}
if (bufIn3 != null && inOff < bufIn3.size) {
normalize = bufIn3.buf(inOff) > 0
}
winSize = rows * columns
if (winSize != oldSize) {
winBuf = new Array(winSize)
dotBuf = new Array(rows )
}
winSize
}
protected def copyInputToWindow(inOff: Int, writeToWinOff: Int, chunk: Int): Unit =
Util.copy(bufIn0.buf, inOff, winBuf, writeToWinOff, chunk)
protected def copyWindowToOutput(readFromWinOff: Int, outOff: Int, chunk: Int): Unit =
Util.copy(winBuf, readFromWinOff, bufOut0.buf, outOff, chunk)
override protected def stopped(): Unit = {
super.stopped()
winBuf = null
dotBuf = null
}
/*
def dot(u: Vector[Double], v: Vector[Double]): Double = (u, v).zipped.map(_ * _).sum
def proj(u: Vector[Double], v: Vector[Double]): Vector[Double] = u * (dot(v, u) / dot(u, u))
def loop(vt: Vector[Vector[Double]], res: Vector[Vector[Double]]): Vector[Vector[Double]] =
vt match {
case vk +: vtt =>
val uk = (vk /: res) { case (ukp, up) =>
// ukp - proj(up, ukp)
val f = dot(ukp, up) / dot(up, up) // idea: cache dot(up, up) -> `dotBuf`
ukp - up * f
}
loop(vtt, res :+ uk)
case _ => res
}
*/
// cf. https://en.wikipedia.org/wiki/Gram%E2%80%93Schmidt_process#Numerical_stability
// cf. https://gist.github.com/Sciss/e9ed09f4e1e06b4fe379b16378fb5bb5
protected def processWindow(writeToWinOff: Int): Int = {
val a = winBuf
val size = winSize
if (writeToWinOff < size) Util.clear(a, writeToWinOff, size - writeToWinOff)
val _rows = rows
val _cols = columns
val b = winBuf
var i = 0
// calculate each output vector
// by replacing the row in `winBuf` in-place, i.e. v -> u
while (i < _rows) {
val ukOff = i * _cols
var j = 0
while (j < i) {
val dotUU = dotBuf(j)
if (dotUU > 0) {
var dotVU = 0.0
var k = ukOff
val stopK = k + _cols
val uOff = j * _cols
var m = uOff
while (k < stopK) {
dotVU += b(k) * b(m)
k += 1
m += 1
}
val f = -dotVU / dotUU
k = ukOff
m = uOff
while (k < stopK) {
b(k) += f * b(m)
k += 1
m += 1
}
}
j += 1
}
// calc and store dotVV
j = ukOff
val stopJ = j + _cols
var dotUU = 0.0
while (j < stopJ) {
val f = b(j)
dotUU += f * f
j += 1
}
dotBuf(i) = dotUU
i += 1
}
if (normalize) {
// "us.map(uk => uk / length(uk))"
i = 0
while (i < _rows) {
val ukOff = i * _cols
val dotUU = dotBuf(i)
val length = math.sqrt(dotUU)
if (length > 0) {
val f = 1.0 / length
var j = ukOff
val stopJ = j + _cols
while (j < stopJ) {
b(j) *= f
j += 1
}
}
i += 1
}
}
size
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy