All Downloads are FREE. Search and download functionalities are using the official Maven repository.

de.sciss.neuralgas.ComputeGNG Maven / Gradle / Ivy

// ========================================================================== ;
//                                                                            ;
// Copyright 1996-1998 Hartmut S. Loos, Instit. f. Neuroinformatik, Bochum    ;
// Copyright 2012-2013 Bernd Fritzke                                          ;
//                                                                            ;
// This program is free software; you can redistribute it and/or modify       ;
// it under the terms of the GNU General Public License as published by       ;
// the Free Software Foundation; either version 1, or (at your option)        ;
// any later version.                                                         ;
//                                                                            ;
// This program is distributed in the hope that it will be useful,            ;
// but WITHOUT ANY WARRANTY; without even the implied warranty of             ;
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the              ;
// GNU General Public License for more details.                               ;
//                                                                            ;
// You should have received a copy of the GNU General Public License          ;
// along with this program; if not, write to the Free Software                ;
// Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.                  ;
//                                                                            ;
// ========================================================================== ;

package de.sciss.neuralgas;

import java.awt.Dimension;
import java.awt.geom.Point2D;
import java.text.SimpleDateFormat;
import java.util.Date;
import java.util.Random;

/**
 * A class which implements the network algorithms.
 * It implements many functions/algorithms.
 * The most important method is 'learn' which implements all adaptation methods
 * 
 */
public class ComputeGNG {
    void log(String prefix, String txt) {
        System.out.println(timeStamp()+" C: "+prefix+txt);
    }
    void log(String txt) {
        log("####### ", txt);
    }

    final static private SimpleDateFormat format = new SimpleDateFormat("yyyy.MM.dd HH.mm.ss");

    public synchronized String timeStamp() {
        long lDateTime = new Date().getTime();
        String str;
        str = format.format(new java.util.Date())+"."+String.format("%03d",lDateTime%1000);
        return str;
    }

    /**
     * The flag for debugging.
     */
    protected final boolean DEBUG = false;

    /**
     * The maximum number of nodes.
     */
    public static final int MAX_NODES = 30000;

    /**
     * The maximum number of edges (3 * maximum number of nodes).
     */
    protected final int MAX_EDGES = 6 * MAX_NODES;

    /**
     * The maximum step-size.
     */
    protected final int MAX_STEP_SIZE = 500;

    /**
     * The size of the DiscreteMixture signal set.
     */
    protected final int MIXTURE_SIZE = 500;

    /**
     * The maximum number of discrete numSignals.
     */
    protected final int MAX_DISCRETE_SIGNALS = 20000;

    /**
     * The maximum x size of the grid array.
     */
    protected final int MAX_GRID_X = 10000;

    /**
     * The maximum y size of the grid array.
     */
    protected final int MAX_GRID_Y = 100;

    /**
     * The factor for the ring-thickness (distribution).
     */
    protected static final float RING_FACTOR = 0.4f;	// Factor < 1

    /**
     * The current maximum number of nodes.
     */
    public int maxNodes = 100;

    /**
     * The current number of runs to insert a new node (GNG).
     */
    public int lambdaGNG = 600;

    /**
     * The current number of input numSignals used for adaptation.
     */
    public int numSignals = 0;

    /**
     * The temporal backup of a run.
     */
    protected int numSignalsTmp = 0;

    /**
     * The x-position of the actual signal.
     */
    public float SignalX = 0f;

    /**
     * The y-position of the actual signal.
     */
    public float SignalY = 0f;

    /**
     * The initial width of the drawing area.
     * This value can only be changed by resizing the applet-viewer.
     */
    public int panelWidth = 648; // 550;

    /**
     * The initial height of the drawing area.
     * This value can only be changed by resizing the applet-viewer.
     */
    public int panelHeight = 377; // 310;

    /**
     * The actual number of nodes.
     */
    public int nNodes = 0;

    /**
     * The array of the actual used nodes.
     */
    public NodeGNG nodes[] = new NodeGNG[MAX_NODES];

    /**
     * The sorted array of indices of nodes.
     * The indices of the nodes are sorted by their distance from the actual
     * signal. sNodes[1] is the index of the nearest node.
     */
    protected int sNodes[] = new int[MAX_NODES + 1];

    /**
     * The array of the nodes in the grid.
     */
    public GridNodeGNG grid[][] = new GridNodeGNG[MAX_GRID_X][MAX_GRID_Y];

    /**
     * The array of the last computed numSignals (x-coordinate).
     */
    public float lastSignalsX[] = new float[MAX_STEP_SIZE];

    /**
     * The array of the last computed numSignals (y-coordinate).
     */
    public float lastSignalsY[] = new float[MAX_STEP_SIZE];

    /**
     * The array of the discrete numSignals (x-coordinate).
     */
    public float discreteSignalsX[] = new float[MAX_DISCRETE_SIGNALS];

    /**
     * The array of the discrete numSignals (y-coordinate).
     */
    public float discreteSignalsY[] = new float[MAX_DISCRETE_SIGNALS];

    /**
     * The array of the best distance (discrete numSignals).
     */
    protected float discreteSignalsD1[] = new float[MAX_DISCRETE_SIGNALS];

    /**
     * The array of the second best distance (discrete numSignals).
     */
    protected float discreteSignalsD2[] = new float[MAX_DISCRETE_SIGNALS];

    /**
     * The array of the second best distance (discrete numSignals).
     */
    protected PointFloat2D C_best[] = new PointFloat2D[MAX_NODES];

    /**
     * The current number of discrete numSignals.
     */
    public int numDiscreteSignals = 500;

    /**
     * The actual number of edges.
     */
    public int nEdges = 0;

    /**
     * The array of the actual used edges.
     */
    public EdgeGNG edges[] = new EdgeGNG[MAX_EDGES];

    /**
     * The flag for random init. The nodes will be placed only in the specified
     *  distribution or not.
     */
    public boolean rndInitB = false;

    private final Random _random;

    public final double random() { return _random.nextDouble(); }

    public final Random getRNG() { return _random; }

    /**
     * The flag for entering the fine-tuning phase (GG).
     */
    public boolean fineTuningB = false;

    /**
     * stop the algorithm when max number of nodes is reached
     */
    public boolean autoStopB = true;

    /**
     * close GG to a torus
     */
    public boolean torusGGB = false;

    /**
     * close SOM to a torus
     */
    public boolean torusSOMB = false;

    /**
     * The flag for inserting new nodes in GNG.
     *  This variable can be set by the user. If true no new nodes are
     *  inserted.
     */
    public boolean noNewNodesGNGB = false;

    /**
     * The flag for inserting new nodes in GG.
     *  This variable can be set by the user. If true no new nodes are
     *  inserted.
     */
    public boolean noNewNodesGGB = false;

    /**
     * The flag for variable movement (HCL).
     *  This variable can be set by the user.
     */
    public boolean variableB = false;

    /**
     * The flag for using utility (GNG-U).
     */
    public boolean GNG_U_B = false;

    /**
     * The flag for changed number of nodes.
     */
    public boolean nNodesChangedB = true;

    /**
     * The flag for LBG-U method
     */
    public boolean LBG_U_B = false;

    /**
     * The flag for end of calculation (LBG)
     */
    public boolean readyLBG_B = false;

    /**
     * The selected distribution.
     *  This variable can be set by the user.
     */
    public PD pd = PD.Rectangle;

    /**
     * The selected algorithm.
     */
    public Algorithm algorithm = Algorithm.NG;

    /**
     * The current maximum number to delete an old edge (GNG,NGwCHL).
     *  This variable can be set by the user.
     */
    public int maxEdgeAge = 88;

    /**
     * The current number of calculations done in one step.
     *  This variable can be set by the user. After  stepSize 
     *  calculations the result is displayed.
     */
    public int stepSize = 50;

    /**
     * The actual x size of the grid array.
     */
    public int gridWidth = 0;

    /**
     * The actual y size of the grid array.
     */
    public int gridHeight = 0;

    /**
     * The direction factor for the x axis (-1 or 1) used for the
     * 'Moving Rectangle' distribution
     */
    protected int bounceX = -1;

    /**
     * The direction factor for the y axis (-1 or 1) used for the
     * 'Moving Rectangle' distribution
     */
    protected int bounceY = -1;

    /**
     * The x coordinate for the 'Jumping Rectangle' and 'R.Mouse' distribution
     */
    public int jumpX = 250;

    /**
     * The y coordinate for the 'Jumping Rectangle' and 'R.Mouse' distribution
     */
    public int jumpY = 250;

    /**
     * Stores the old x value of the remainder in order to detect the bounce
     * (used for the 'Moving Rectangle' distribution)
     */
    protected double bounceX_old = 1;
    /**
     * Stores the old y value of the remainder in order to detect the bounce
     * (used for the 'Moving Rectangle' distribution)
     */
    protected double bounceY_old = 1;

    /**
     * The value epsilon for the HCL algorithm.
     *  This variable can be set by the user.
     */
    public float epsilon = 0.1f;

    /**
     * The value epsilon for the GNG algorithm (winner).
     *  This variable can be set by the user.
     */
    public float epsilonGNG = 0.1f;

    /**
     * The value epsilon for the GNG algorithm (second).
     *  This variable can be set by the user.
     */
    public float epsilonGNG2 = 0.001f;

    /**
     * The value alpha for the GNG algorithm.
     *  This variable can be set by the user.
     */
    public float alphaGNG = 0.5f;

    /**
     * The value beta for the GNG algorithm.
     *  This variable can be set by the user.
     */
    private float betaGNG = 0.0005f;

    public void setBetaGNG(float value) {
        betaGNG             = value;
        decayFactorUtility  = 1.0f - betaGNG;
        decayFactor         = 1.0f - betaGNG;
    }

    public float getBetaGNG() {
        return betaGNG;
    }

    /**
     * maximum width of grid
     *
     */
    public int maxYGG = 0;

    /**
     * The utility factor for the GNG-U algorithm.
     *  This variable can be set by the user.
     */
    public float utilityGNG = 3.0f;

    /*
     * The decay factor for utility.
     * Will be recalculated in setBetaGNG
     */
    private float decayFactorUtility = 1.0f - betaGNG;

    /*
     * The factor to forget old values.
     * Will be recalculated in setBetaGNG
     */
    private float decayFactor = 1.0f - betaGNG;

    /**
     * The value lambda initial for the NG,NGwCHL,GG algorithms.
     *  This variable can be set by the user.
     */
    public float l_i = 30.0f;

    /**
     * The value lambda final for the NG,NGwCHL,GG algorithms.
     *  This variable can be set by the user.
     */
    public float l_f = 0.01f;

    /**
     * The value epsilon(t) for the NG,NGwCHL algorithms.
     */
    protected float e_t = 0.0f;

    /**
     * The value epsilon initial for the NG,NGwCHL,GG algorithms.
     *  This variable can be set by the user.
     */
    public float e_i = 0.3f;

    /**
     * The value epsilon final for the NG,NGwCHL,GG algorithms.
     *  This variable can be set by the user.
     */
    public float e_f = 0.05f;

    /**
     * The value t_max for the NG,NGwCHL,SOM algorithms.
     *  This variable can be set by the user.
     */
    public float t_max = 40000.0f;

    /**
     * The value delete edge initial for the NGwCHL algorithm.
     *  This variable can be set by the user.
     */
    public float delEdge_i = 20.0f;

    /**
     * The value delete edge final for the NGwCHL algorithm.
     *  This variable can be set by the user.
     */
    public float delEdge_f = 200.0f;

    /**
     * The value sigma for the GG algorithm.
     *  This variable can be set by the user.
     */
    public float sigma = 0.9f;

    /**
     * The value sigma_i for the SOM algorithm.
     *  This variable can be set by the user.
     */
    public float sigma_i = 5.0f;

    /**
     * The value sigma_f for the SOM algorithm.
     *  This variable can be set by the user.
     */
    public float sigma_f = 5.0f;

    /**
     * This value is displayed in the error graph.
     */
    public float valueGraph = 0.0f;

    /**
     * This value contains the best error value for LBG-U up to now.
     */
    public float errorBestLBG_U = Float.MAX_VALUE;

    /**
     * The string shown in the fine-tuning phase of the method GG.
     */
    public String fineTuningS = "";

    /**
     * The constructor.
     */
    public ComputeGNG(long seed) {
        _random = new Random(seed);
    }

    public ComputeGNG() {
        this(System.currentTimeMillis());
    }

    public void reset() {
        numSignals  = 0;
        nNodes      = 0;
        nEdges      = 0;
    }

    /**
     * Add a node. The new node will be randomly placed within the
     *  given dimension or according to the current distribution.
     *
     * @param d          The dimension of the initial drawing area
     * @return           The index of the new node
     */
    public int addNode(Dimension d) {
        if ( (nNodes == MAX_NODES) || (nNodes >= maxNodes) )
            return -1;

        NodeGNG n = new NodeGNG();

        if (rndInitB) {
            // init from Rectangle 0.8x0.8+(0.1,0.1)
            n.x = (float) (10 + (d.width -20) * random()); // Math.random()
            n.y = (float) (10 + (d.height-20) * random()); // Math.random()
        } else {
            // init from current distribution
            getSignal(pd);
            n.x = SignalX;
            n.y = SignalY;
        }
        //System.out.printf("addNode() and width is %d and rndInit is %s, x=%f, y=%f\n",d.width, rndInitB,n.x,n.y);

        n.nNeighbor = 0;
        if (algorithm.isDiscrete())
            n.hasMoved = true;
        nodes[nNodes] = n;
        nNodesChangedB = true;
        return nNodes++;
    }

    /**
     * Add a node. The new node will be placed at the
     *  given coordinates.
     *
     * @param x          The x-coordinate of the new node
     * @param y          The y-coordinate of the new node
     * @return           The index of the new node
     */
    public int addNode(int x, int y) {
        if ( (nNodes == MAX_NODES) || (nNodes >= maxNodes) )
            return -1;
        NodeGNG n = new NodeGNG();
        n.x = x;
        n.y = y;
        if (algorithm.isDiscrete()) // LBG
            n.hasMoved = true;
        nodes[nNodes] = n;
        nNodesChangedB = true;
        return nNodes++;
    }

    /**
     * Add a node. The new node will be placed between the
     * given nodes which must be connected. The existing edge is split.
     * The new node gets the average of the interesting values of
     * the two given nodes.
     *
     * @param n1         The index of a node
     * @param n2         The index of a node
     * @return           The index of the new node
     */
    protected int insertNode(int n1, int n2) {
        if ( (nNodes == MAX_NODES) || (nNodes >= maxNodes) )
            return -1;
        if ( (n1 < 0) || (n2 < 0) )
            return -1;
        NodeGNG n = new NodeGNG();
        float dx = (nodes[n1].x - nodes[n2].x) / 2.0f;  // XXX TODO --- could interpolate directly
        float dy = (nodes[n1].y - nodes[n2].y) / 2.0f;
        // reduce errors of neighbor nodes of the new unit
        nodes[n1].error *= (1.0f - alphaGNG);
        nodes[n2].error *= (1.0f - alphaGNG);

        // interpolate error from neighbors
        n.error = (nodes[n1].error + nodes[n2].error)/2.0f;
        // interpolate utility from neighbors
        n.utility = (nodes[n1].utility + nodes[n2].utility)/2.0f;
        // interpolate coordinates
        n.x = nodes[n1].x - dx;     // XXX TODO --- could interpolate directly
        n.y = nodes[n1].y - dy;
        n.isMostRecentlyInserted = true;
        nodes[nNodes] = n;
        deleteEdge(n1, n2);
        addEdge(n1, nNodes); //n1<->new
        addEdge(n2, nNodes); //n2<->new
        nNodesChangedB = true;

        return nNodes++;
    }

    /**
     * Add a node into the grid. The new node will be randomly placed within the
     *  given dimension.
     *
     * @param x          The x coordinate of the grid array
     * @param y          The y coordinate of the grid array
     * @param d          The dimension of the initial drawing area
     * @return           The index of the new node
     */
    protected int addGridNode(int x, int y, Dimension d) {
        if ( (x > MAX_GRID_X) || (y > MAX_GRID_Y) )
            return -1;

        int n = addNode(d);
        nodes[n].x_grid = x;
        nodes[n].y_grid = y;

        grid[x][y] = new GridNodeGNG(n, nodes[n]);

        return n;
    }

    /**
     * Initialize the grid. The new nodes will be randomly placed within the
     *  given dimension.
     *
     * @param width          The width of the grid array
     * @param height          The height of the grid array
     * @param d          The dimension of the initial drawing area
     */
    public void initGrid(int width, int height, Dimension d) {
        if ( (width > MAX_GRID_X) || (height > MAX_GRID_Y) ){
            throw new IllegalStateException ( ); // hack bf
            //return;
        }
        int i, j;

        if (algorithm == Algorithm.SOM)
            maxNodes = width * height;

        //
        // add nodes
        //
        for (i = 0; i < width; i++)
            for (j = 0; j < height; j++)
            {
                addGridNode(i, j, d);
            }

        gridWidth = width;
        gridHeight = height;

        //
        // add edges
        //
        for (i = 0; i < gridWidth; i++) {
            for (j = 0; j < gridHeight; j++) {
                if ( i < (gridWidth - 1) )
                    addEdge(grid[i][j].index, grid[i+1][j].index);
                if ( j < (gridHeight - 1) )
                    addEdge(grid[i][j].index, grid[i][j+1].index);
            }
        }
    }

    /**
     * Prepare to insert a row or column into the grid.
     *
     * @return		The index of the last inserted node or -1
     */
    protected boolean enlargeGrid() {
        float tau = 0;
        int x = 0;
        int y = 0;
        int n = -1;
        float d1 = 0, d2 = 0, d3 = 0, d4 = 0, max = 0;

        for (int j = 0; j < gridHeight; j++) {
            for (int i = 0; i < gridWidth; i++) {
                // Find maximum resource value tau
                if ( grid[i][j].node.tau > tau ) {
                    tau = grid[i][j].node.tau;
                    x = i;
                    y = j;
                }
                //System.out.print(String.format("%06.03f", grid[i][j].node.tau));
                //System.out.print(", ");

                grid[i][j].node.tau = 0; // clear tau value
                grid[i][j].node.isMostRecentlyInserted = false;
            }
            //System.out.println();
        }
        //log(String.format("maximum tau value: %f  x: %d  y: %d  width: %d  height: %d", tau,x,y,gridWidth, gridHeight));
        // assertion: grid[x][y] is the node with maximum tau value

        // Identify the neighbor of (x,y) with the most different reference vector

        // left neighbor
        if (x > 0)
            d1 = (grid[x-1][y].node.x - grid[x][y].node.x) *
                 (grid[x-1][y].node.x - grid[x][y].node.x) +
                 (grid[x-1][y].node.y - grid[x][y].node.y) *
                 (grid[x-1][y].node.y - grid[x][y].node.y);

        // upper neighbor
        if (y > 0)
            d2 = (grid[x][y-1].node.x - grid[x][y].node.x) *
                 (grid[x][y-1].node.x - grid[x][y].node.x) +
                 (grid[x][y-1].node.y - grid[x][y].node.y) *
                 (grid[x][y-1].node.y - grid[x][y].node.y);

        // right neighbor
        if (x < gridWidth - 1)
            d3 = (grid[x+1][y].node.x - grid[x][y].node.x) *
                 (grid[x+1][y].node.x - grid[x][y].node.x) +
                 (grid[x+1][y].node.y - grid[x][y].node.y) *
                 (grid[x+1][y].node.y - grid[x][y].node.y);

        // lower neighbor
        if (y < gridHeight - 1)
            d4 = (grid[x][y+1].node.x - grid[x][y].node.x) *
                 (grid[x][y+1].node.x - grid[x][y].node.x) +
                 (grid[x][y+1].node.y - grid[x][y].node.y) *
                 (grid[x][y+1].node.y - grid[x][y].node.y);
        if ((maxYGG > 0) && (gridHeight >= maxYGG )) { //
            d4=0;
            d2=0;
        }

        max = Math.max(d1, Math.max(d2, Math.max(d3, d4)));

        if (max == d1)        // left
            n = insertColumn(x - 1);
        else if (max == d2)   // upper
            n = insertRow(y - 1);
        else if (max == d3)   // right
            n = insertColumn(x);
        else                  // lower
            n = insertRow(y);

        if (n == -1)
            return false;
        else
            return true;
    }

    /**
     * Add a row into the grid. The new row will be placed after index y.
     *
     * @param y          The row index
     * @return           The index of the last inserted node or -1
     */
    protected int insertRow(int y) {
        if ( (gridHeight == MAX_GRID_Y) || (nNodes + gridWidth > maxNodes) )
            return -1;

        int n = -1;
        int i, j;

        // Insert nodes for the new row
        for (i = 0; i < gridWidth; i++) {
            n = addNode(0,0);
            nodes[n].x_grid = i;
            nodes[n].y_grid = gridHeight;
            grid[i][gridHeight] = new GridNodeGNG(n, nodes[n]);

            // Add Edges
            if (i != 0)
                addEdge(grid[i][gridHeight].index, grid[i-1][gridHeight].index);
            addEdge(grid[i][gridHeight].index, grid[i][gridHeight-1].index);
        }

        // Now change the parameters (position)
        for (j = gridHeight; j > y+1; j--) {
            for (i = 0; i < gridWidth; i++) {
                grid[i][j].node.x = grid[i][j-1].node.x;
                grid[i][j].node.y = grid[i][j-1].node.y;
            }
        }

        for (i = 0; i < gridWidth; i++) {
            grid[i][y+1].node.x = (grid[i][y].node.x + grid[i][y+2].node.x)*0.5f;
            grid[i][y+1].node.y = (grid[i][y].node.y + grid[i][y+2].node.y)*0.5f;
            grid[i][y+1].node.tau = (grid[i][y].node.tau + grid[i][y+2].node.tau)*0.33f;
            grid[i][y].node.tau *= 0.66f;
            grid[i][y+2].node.tau *= 0.66f;

            grid[i][y+1].node.isMostRecentlyInserted = true;
        }

        // Make the new row official
        gridHeight++;

        return n;
    }

    /**
     * Add a column into the grid. The new column will be placed after index x.
     *
     * @param x          The column index
     * @return           The index of the last inserted node or -1
     */
    protected int insertColumn(int x) {
        if ( (gridWidth == MAX_GRID_X) || (nNodes + gridHeight > maxNodes) )
            // max size or dimension reached: no further insert!
            return -1;

        int n = -1;
        int i, j;

        // Insert nodes for the new Column (x-index: gridwidth)
        for (j = 0; j < gridHeight; j++) {
            n = addNode(0,0);
            nodes[n].x_grid = gridWidth;
            nodes[n].y_grid = j;
            grid[gridWidth][j] = new GridNodeGNG(n, nodes[n]);

            // Add Edges
            if (j != 0)
                addEdge(grid[gridWidth][j].index, grid[gridWidth][j-1].index);
            addEdge(grid[gridWidth][j].index, grid[gridWidth-1][j].index);
        }

        // Now change the parameters (position)
        // i.e. make space for new column x+1 by moving columns x+1 and following to the right
        //
        for (i = gridWidth; i > x+1; i--) {
            for (j = 0; j < gridHeight; j++) {
                grid[i][j].node.x = grid[i-1][j].node.x;
                grid[i][j].node.y = grid[i-1][j].node.y;
            }
        }

        // interpolate positions for column x+1
        // relies on the fact that column x+1 still contains the old values which are also copied to x+2
        for (j = 0; j < gridHeight; j++) {
            //System.out.printf("interp: x=%d,  j=%d\n",x,j);
            grid[x+1][j].node.x = (grid[x][j].node.x + grid[x+2][j].node.x)*0.5f;
            grid[x+1][j].node.y = (grid[x][j].node.y + grid[x+2][j].node.y)*0.5f;
            grid[x+1][j].node.tau =    (grid[x][j].node.tau     +grid[x+2][j].node.tau)*1/3;
            grid[x][j].node.tau *= 0.66;
            grid[x+2][j].node.tau *= 0.66;
            grid[x+1][j].node.isMostRecentlyInserted = true;
        }

        // Make the new row official
        gridWidth++;

        return n;
    }

    /**
     * Delete the given node.
     *
     * @param n          The index of a node
     */
    protected void deleteNode(int n) {
        NodeGNG node = nodes[n];
        int num = node.numNeighbors();
        int i;

        for (i = 0; i < num; i++)
            deleteEdge(n, node.neighbor(0));

        nNodesChangedB = true;
        nNodes--;
        nodes[n] = nodes[nNodes];
        nodes[nNodes] = null;

        // Now rename all occurrences of nodes[nnodes] to nodes[n]
        for (i = 0 ; i < nNodes ; i++)
            nodes[i].replaceNeighbor(nNodes, n);
        for (i = 0 ; i < nEdges ; i++)
            edges[i].replace(nNodes, n);

        return;
    }

    /**
     * Connect two nodes or reset the age of their edge.
     *
     * @param from          The index of the first node
     * @param to            The index of the second node
     */
    protected void addEdge(int from, int to) {
        if (nNodes < 2)
            return;

        if (nodes[from].isNeighbor(to)) {
            // Find edge(from,to) and reset age
            int i = findEdge(from, to);

            if (i != -1)
                edges[i].age = 0;
            return;
        }

        if (nEdges == MAX_EDGES)
            return;

        if ( (nodes[from].moreNeighbors()) && (nodes[to].moreNeighbors()) ) {
            nodes[to].addNeighbor(from);
            nodes[from].addNeighbor(to);
        } else
            return;

        // Add new edge
        EdgeGNG e = new EdgeGNG();
        e.from = from;
        e.to = to;
        edges[nEdges] = e;
        nEdges++;
    }

    /**
     * Disconnect two nodes.
     *
     * @param from          The index of the first node
     * @param to            The index of the second node
     */
    protected void deleteEdge(int from, int to) {
        int i = findEdge(from, to);
        if (i != -1) {
            nodes[edges[i].from].deleteNeighbor(edges[i].to);
            nodes[edges[i].to].deleteNeighbor(edges[i].from);
            nEdges--;
            edges[i] = edges[nEdges];
            edges[nEdges] = null;
        }
        return;
    }

    /**
     * Delete an edge.
     *
     * @param edgeNr          The index of the edge
     */
    protected void deleteEdge(int edgeNr) {
        nodes[edges[edgeNr].from].deleteNeighbor(edges[edgeNr].to);
        nodes[edges[edgeNr].to].deleteNeighbor(edges[edgeNr].from);
        nEdges--;
        edges[edgeNr] = edges[nEdges];
        edges[nEdges] = null;
    }

    /**
     * Find an edge. Find the edge between the two given nodes.
     *
     * @param from          The index of the first node
     * @param to            The index of the second node
     * @return              The index of the found edge or -1
     */
    protected int findEdge(int from, int to) {

        for (int i = 0; i < nEdges; i++)
            if (( (edges[i].from == from) && (edges[i].to == to) ) ||
                    ( (edges[i].from == to) && (edges[i].to == from) ) )
                return i;
        return -1;
    }

    /**
     * All edges starting from the given node are aged.
     *  Too old edges are deleted.
     *
     * @param node          The index of a node
     * @see ComputeGNG#maxEdgeAge
     */
    protected void ageEdgesOfNode(int node) {
        // TODO: this is inefficient for large number of edges, perhaps keep local list of edges per node
        for (int i = nEdges - 1; i > -1; i--) {
            if ( (edges[i].from == node) || (edges[i].to == node) )
                edges[i].age++;
            if (edges[i].age > maxEdgeAge)
                deleteEdge(i);
        }
    }

    /**
     * Find neighbor with the highest error.
     *
     * @param master          The index of a node
     * @return                The index of a node
     */
    protected int maximumErrorNeighbor(int master) {
        float ws = Float.MIN_VALUE;
        int wn = -1;
        int n = -1;
        int num = nodes[master].numNeighbors();
        for (int i = 0; i < num; i++) {
            n = nodes[master].neighbor(i);
            if (ws < nodes[n].error) {
                ws = nodes[n].error;
                wn = n;
            }
        }

        return wn;
    }

    public void rescaleDiscreteSignals(double x, double y) {
        for (int i = 0; i < MAX_DISCRETE_SIGNALS; i++) {
            discreteSignalsX[i] *= x;
            discreteSignalsY[i] *= y;
        }
    }
    /**
     * Generate discrete numSignals for the given distribution.
     *  The result goes into the global arrays  discreteSignalsX 
     *  and  discreteSignalsY .
     *
     *  With and height are taken from panelWidth and panelHeight.
     *
     * @param pd          The specified distribution
     */
    public void initDiscreteSignals(PD pd) {
//        Dimension d = getSize();
        int w = panelWidth; // d.width;
        int h = panelHeight; // d.height;
        int kx = 1;
        int ky = 1;
        int l = 0;
        float dSX[] = discreteSignalsX;
        float dSY[] = discreteSignalsY;
        log("init discrete");
        if (pd != PD.DiscreteMixture) {
            log("init discrete from cont");
            //
            // generate a finite signal set from continuous distribution
            //
            for (int i = 0; i < MAX_DISCRETE_SIGNALS; i++) {
                getSignal(pd);
                discreteSignalsX[i] = SignalX;
                discreteSignalsY[i] = SignalY;
            }
        } else {
            log("init discrete from mixture");
            //
            // DiscreteMixture Distribution (500 Points)
            //

            // scale according to app dimension
            if (w > h) {
                kx = w/4;
                l = h;
            } else {
                ky = h/4;
                l = w;
            }

            int discreteSize = 500; // size of discrete mixture distribution
            dSX[0]=(float)(kx+l*0.13814); dSY[0]=(float)(ky+l*(1.0-0.29675));
            dSX[1]=(float)(kx+l*0.19548); dSY[1]=(float)(ky+l*(1.0-0.09674));
            dSX[2]=(float)(kx+l*0.73576); dSY[2]=(float)(ky+l*(1.0-0.86994));
            dSX[3]=(float)(kx+l*0.73065); dSY[3]=(float)(ky+l*(1.0-0.19024));
            dSX[4]=(float)(kx+l*0.83479); dSY[4]=(float)(ky+l*(1.0-0.34258));
            dSX[5]=(float)(kx+l*0.13184); dSY[5]=(float)(ky+l*(1.0-0.56509));
            dSX[6]=(float)(kx+l*0.15959); dSY[6]=(float)(ky+l*(1.0-0.59065));
            dSX[7]=(float)(kx+l*0.21696); dSY[7]=(float)(ky+l*(1.0-0.1402));
            dSX[8]=(float)(kx+l*0.61592); dSY[8]=(float)(ky+l*(1.0-0.16657));
            dSX[9]=(float)(kx+l*0.10513); dSY[9]=(float)(ky+l*(1.0-0.21708));
            dSX[10]=(float)(kx+l*0.1864); dSY[10]=(float)(ky+l*(1.0-0.1454));
            dSX[11]=(float)(kx+l*0.36696); dSY[11]=(float)(ky+l*(1.0-0.74924));
            dSX[12]=(float)(kx+l*0.18345); dSY[12]=(float)(ky+l*(1.0-0.80946));
            dSX[13]=(float)(kx+l*0.8509); dSY[13]=(float)(ky+l*(1.0-0.38268));
            dSX[14]=(float)(kx+l*0.19476); dSY[14]=(float)(ky+l*(1.0-0.74262));
            dSX[15]=(float)(kx+l*0.49164); dSY[15]=(float)(ky+l*(1.0-0.65776));
            dSX[16]=(float)(kx+l*0.86552); dSY[16]=(float)(ky+l*(1.0-0.38373));
            dSX[17]=(float)(kx+l*0.73176); dSY[17]=(float)(ky+l*(1.0-0.84414));
            dSX[18]=(float)(kx+l*0.71978); dSY[18]=(float)(ky+l*(1.0-0.86979));
            dSX[19]=(float)(kx+l*0.83034); dSY[19]=(float)(ky+l*(1.0-0.36613));
            dSX[20]=(float)(kx+l*0.39886); dSY[20]=(float)(ky+l*(1.0-0.71479));
            dSX[21]=(float)(kx+l*0.09955); dSY[21]=(float)(ky+l*(1.0-0.20342));
            dSX[22]=(float)(kx+l*0.07091); dSY[22]=(float)(ky+l*(1.0-0.17197));
            dSX[23]=(float)(kx+l*0.21896); dSY[23]=(float)(ky+l*(1.0-0.10398));
            dSX[24]=(float)(kx+l*0.72465); dSY[24]=(float)(ky+l*(1.0-0.13984));
            dSX[25]=(float)(kx+l*0.71034); dSY[25]=(float)(ky+l*(1.0-0.87981));
            dSX[26]=(float)(kx+l*0.83547); dSY[26]=(float)(ky+l*(1.0-0.36065));
            dSX[27]=(float)(kx+l*0.13907); dSY[27]=(float)(ky+l*(1.0-0.56451));
            dSX[28]=(float)(kx+l*0.62124); dSY[28]=(float)(ky+l*(1.0-0.20175));
            dSX[29]=(float)(kx+l*0.65543); dSY[29]=(float)(ky+l*(1.0-0.17331));
            dSX[30]=(float)(kx+l*0.72349); dSY[30]=(float)(ky+l*(1.0-0.14375));
            dSX[31]=(float)(kx+l*0.82495); dSY[31]=(float)(ky+l*(1.0-0.40116));
            dSX[32]=(float)(kx+l*0.76586); dSY[32]=(float)(ky+l*(1.0-0.82376));
            dSX[33]=(float)(kx+l*0.24648); dSY[33]=(float)(ky+l*(1.0-0.11987));
            dSX[34]=(float)(kx+l*0.14817); dSY[34]=(float)(ky+l*(1.0-0.59985));
            dSX[35]=(float)(kx+l*0.82663); dSY[35]=(float)(ky+l*(1.0-0.38964));
            dSX[36]=(float)(kx+l*0.37131); dSY[36]=(float)(ky+l*(1.0-0.72726));
            dSX[37]=(float)(kx+l*0.12176); dSY[37]=(float)(ky+l*(1.0-0.60139));
            dSX[38]=(float)(kx+l*0.73587); dSY[38]=(float)(ky+l*(1.0-0.86952));
            dSX[39]=(float)(kx+l*0.59645); dSY[39]=(float)(ky+l*(1.0-0.21302));
            dSX[40]=(float)(kx+l*0.39489); dSY[40]=(float)(ky+l*(1.0-0.63452));
            dSX[41]=(float)(kx+l*0.234); dSY[41]=(float)(ky+l*(1.0-0.10385));
            dSX[42]=(float)(kx+l*0.51314); dSY[42]=(float)(ky+l*(1.0-0.67151));
            dSX[43]=(float)(kx+l*0.13499); dSY[43]=(float)(ky+l*(1.0-0.56896));
            dSX[44]=(float)(kx+l*0.10815); dSY[44]=(float)(ky+l*(1.0-0.62515));
            dSX[45]=(float)(kx+l*0.35487); dSY[45]=(float)(ky+l*(1.0-0.65635));
            dSX[46]=(float)(kx+l*0.13939); dSY[46]=(float)(ky+l*(1.0-0.24579));
            dSX[47]=(float)(kx+l*0.22087); dSY[47]=(float)(ky+l*(1.0-0.20651));
            dSX[48]=(float)(kx+l*0.12274); dSY[48]=(float)(ky+l*(1.0-0.61131));
            dSX[49]=(float)(kx+l*0.47888); dSY[49]=(float)(ky+l*(1.0-0.65166));
            dSX[50]=(float)(kx+l*0.18836); dSY[50]=(float)(ky+l*(1.0-0.6895));
            dSX[51]=(float)(kx+l*0.2511); dSY[51]=(float)(ky+l*(1.0-0.12476));
            dSX[52]=(float)(kx+l*0.84242); dSY[52]=(float)(ky+l*(1.0-0.3685));
            dSX[53]=(float)(kx+l*0.70824); dSY[53]=(float)(ky+l*(1.0-0.18571));
            dSX[54]=(float)(kx+l*0.2548); dSY[54]=(float)(ky+l*(1.0-0.77552));
            dSX[55]=(float)(kx+l*0.3659); dSY[55]=(float)(ky+l*(1.0-0.64852));
            dSX[56]=(float)(kx+l*0.78094); dSY[56]=(float)(ky+l*(1.0-0.37826));
            dSX[57]=(float)(kx+l*0.34205); dSY[57]=(float)(ky+l*(1.0-0.7295));
            dSX[58]=(float)(kx+l*0.83349); dSY[58]=(float)(ky+l*(1.0-0.37511));
            dSX[59]=(float)(kx+l*0.35477); dSY[59]=(float)(ky+l*(1.0-0.68483));
            dSX[60]=(float)(kx+l*0.13761); dSY[60]=(float)(ky+l*(1.0-0.17267));
            dSX[61]=(float)(kx+l*0.46041); dSY[61]=(float)(ky+l*(1.0-0.72594));
            dSX[62]=(float)(kx+l*0.12945); dSY[62]=(float)(ky+l*(1.0-0.58863));
            dSX[63]=(float)(kx+l*0.27379); dSY[63]=(float)(ky+l*(1.0-0.14071));
            dSX[64]=(float)(kx+l*0.4097); dSY[64]=(float)(ky+l*(1.0-0.77705));
            dSX[65]=(float)(kx+l*0.7175); dSY[65]=(float)(ky+l*(1.0-0.87696));
            dSX[66]=(float)(kx+l*0.43969); dSY[66]=(float)(ky+l*(1.0-0.66972));
            dSX[67]=(float)(kx+l*0.48588); dSY[67]=(float)(ky+l*(1.0-0.63899));
            dSX[68]=(float)(kx+l*0.69263); dSY[68]=(float)(ky+l*(1.0-0.20386));
            dSX[69]=(float)(kx+l*0.7374); dSY[69]=(float)(ky+l*(1.0-0.8667));
            dSX[70]=(float)(kx+l*0.67306); dSY[70]=(float)(ky+l*(1.0-0.18347));
            dSX[71]=(float)(kx+l*0.21203); dSY[71]=(float)(ky+l*(1.0-0.12508));
            dSX[72]=(float)(kx+l*0.48821); dSY[72]=(float)(ky+l*(1.0-0.67574));
            dSX[73]=(float)(kx+l*0.45742); dSY[73]=(float)(ky+l*(1.0-0.67679));
            dSX[74]=(float)(kx+l*0.67982); dSY[74]=(float)(ky+l*(1.0-0.1421));
            dSX[75]=(float)(kx+l*0.13429); dSY[75]=(float)(ky+l*(1.0-0.56728));
            dSX[76]=(float)(kx+l*0.2402); dSY[76]=(float)(ky+l*(1.0-0.76521));
            dSX[77]=(float)(kx+l*0.15482); dSY[77]=(float)(ky+l*(1.0-0.178));
            dSX[78]=(float)(kx+l*0.71594); dSY[78]=(float)(ky+l*(1.0-0.15844));
            dSX[79]=(float)(kx+l*0.10534); dSY[79]=(float)(ky+l*(1.0-0.59961));
            dSX[80]=(float)(kx+l*0.44167); dSY[80]=(float)(ky+l*(1.0-0.69823));
            dSX[81]=(float)(kx+l*0.46529); dSY[81]=(float)(ky+l*(1.0-0.70682));
            dSX[82]=(float)(kx+l*0.13842); dSY[82]=(float)(ky+l*(1.0-0.56618));
            dSX[83]=(float)(kx+l*0.09876); dSY[83]=(float)(ky+l*(1.0-0.5795));
            dSX[84]=(float)(kx+l*0.12101); dSY[84]=(float)(ky+l*(1.0-0.57408));
            dSX[85]=(float)(kx+l*0.44963); dSY[85]=(float)(ky+l*(1.0-0.74847));
            dSX[86]=(float)(kx+l*0.12532); dSY[86]=(float)(ky+l*(1.0-0.56478));
            dSX[87]=(float)(kx+l*0.18264); dSY[87]=(float)(ky+l*(1.0-0.77186));
            dSX[88]=(float)(kx+l*0.80443); dSY[88]=(float)(ky+l*(1.0-0.35896));
            dSX[89]=(float)(kx+l*0.72038); dSY[89]=(float)(ky+l*(1.0-0.90205));
            dSX[90]=(float)(kx+l*0.24934); dSY[90]=(float)(ky+l*(1.0-0.77047));
            dSX[91]=(float)(kx+l*0.35552); dSY[91]=(float)(ky+l*(1.0-0.70131));
            dSX[92]=(float)(kx+l*0.49591); dSY[92]=(float)(ky+l*(1.0-0.71126));
            dSX[93]=(float)(kx+l*0.36426); dSY[93]=(float)(ky+l*(1.0-0.72803));
            dSX[94]=(float)(kx+l*0.21113); dSY[94]=(float)(ky+l*(1.0-0.08745));
            dSX[95]=(float)(kx+l*0.33412); dSY[95]=(float)(ky+l*(1.0-0.68345));
            dSX[96]=(float)(kx+l*0.17158); dSY[96]=(float)(ky+l*(1.0-0.226));
            dSX[97]=(float)(kx+l*0.69135); dSY[97]=(float)(ky+l*(1.0-0.26172));
            dSX[98]=(float)(kx+l*0.80362); dSY[98]=(float)(ky+l*(1.0-0.34908));
            dSX[99]=(float)(kx+l*0.49367); dSY[99]=(float)(ky+l*(1.0-0.61372));
            dSX[100]=(float)(kx+l*0.67809); dSY[100]=(float)(ky+l*(1.0-0.16071));
            dSX[101]=(float)(kx+l*0.42288); dSY[101]=(float)(ky+l*(1.0-0.7547));
            dSX[102]=(float)(kx+l*0.21535); dSY[102]=(float)(ky+l*(1.0-0.71766));
            dSX[103]=(float)(kx+l*0.26248); dSY[103]=(float)(ky+l*(1.0-0.0794));
            dSX[104]=(float)(kx+l*0.65766); dSY[104]=(float)(ky+l*(1.0-0.11433));
            dSX[105]=(float)(kx+l*0.81799); dSY[105]=(float)(ky+l*(1.0-0.36416));
            dSX[106]=(float)(kx+l*0.80867); dSY[106]=(float)(ky+l*(1.0-0.39382));
            dSX[107]=(float)(kx+l*0.2401); dSY[107]=(float)(ky+l*(1.0-0.83207));
            dSX[108]=(float)(kx+l*0.83016); dSY[108]=(float)(ky+l*(1.0-0.37551));
            dSX[109]=(float)(kx+l*0.30746); dSY[109]=(float)(ky+l*(1.0-0.78597));
            dSX[110]=(float)(kx+l*0.22122); dSY[110]=(float)(ky+l*(1.0-0.19961));
            dSX[111]=(float)(kx+l*0.81422); dSY[111]=(float)(ky+l*(1.0-0.39008));
            dSX[112]=(float)(kx+l*0.28025); dSY[112]=(float)(ky+l*(1.0-0.16485));
            dSX[113]=(float)(kx+l*0.42936); dSY[113]=(float)(ky+l*(1.0-0.70449));
            dSX[114]=(float)(kx+l*0.20721); dSY[114]=(float)(ky+l*(1.0-0.79412));
            dSX[115]=(float)(kx+l*0.1023); dSY[115]=(float)(ky+l*(1.0-0.59687));
            dSX[116]=(float)(kx+l*0.49873); dSY[116]=(float)(ky+l*(1.0-0.68088));
            dSX[117]=(float)(kx+l*0.44373); dSY[117]=(float)(ky+l*(1.0-0.60472));
            dSX[118]=(float)(kx+l*0.12955); dSY[118]=(float)(ky+l*(1.0-0.58045));
            dSX[119]=(float)(kx+l*0.40319); dSY[119]=(float)(ky+l*(1.0-0.64087));
            dSX[120]=(float)(kx+l*0.39597); dSY[120]=(float)(ky+l*(1.0-0.74223));
            dSX[121]=(float)(kx+l*0.37318); dSY[121]=(float)(ky+l*(1.0-0.74561));
            dSX[122]=(float)(kx+l*0.48026); dSY[122]=(float)(ky+l*(1.0-0.65002));
            dSX[123]=(float)(kx+l*0.09824); dSY[123]=(float)(ky+l*(1.0-0.15969));
            dSX[124]=(float)(kx+l*0.68454); dSY[124]=(float)(ky+l*(1.0-0.17986));
            dSX[125]=(float)(kx+l*0.11659); dSY[125]=(float)(ky+l*(1.0-0.30008));
            dSX[126]=(float)(kx+l*0.73836); dSY[126]=(float)(ky+l*(1.0-0.87819));
            dSX[127]=(float)(kx+l*0.37924); dSY[127]=(float)(ky+l*(1.0-0.72885));
            dSX[128]=(float)(kx+l*0.07252); dSY[128]=(float)(ky+l*(1.0-0.21803));
            dSX[129]=(float)(kx+l*0.22104); dSY[129]=(float)(ky+l*(1.0-0.81961));
            dSX[130]=(float)(kx+l*0.23872); dSY[130]=(float)(ky+l*(1.0-0.06629));
            dSX[131]=(float)(kx+l*0.27114); dSY[131]=(float)(ky+l*(1.0-0.77851));
            dSX[132]=(float)(kx+l*0.84307); dSY[132]=(float)(ky+l*(1.0-0.35729));
            dSX[133]=(float)(kx+l*0.83856); dSY[133]=(float)(ky+l*(1.0-0.38892));
            dSX[134]=(float)(kx+l*0.84041); dSY[134]=(float)(ky+l*(1.0-0.33806));
            dSX[135]=(float)(kx+l*0.72441); dSY[135]=(float)(ky+l*(1.0-0.84423));
            dSX[136]=(float)(kx+l*0.45169); dSY[136]=(float)(ky+l*(1.0-0.66888));
            dSX[137]=(float)(kx+l*0.7291); dSY[137]=(float)(ky+l*(1.0-0.85748));
            dSX[138]=(float)(kx+l*0.38792); dSY[138]=(float)(ky+l*(1.0-0.74045));
            dSX[139]=(float)(kx+l*0.69006); dSY[139]=(float)(ky+l*(1.0-0.88995));
            dSX[140]=(float)(kx+l*0.09004); dSY[140]=(float)(ky+l*(1.0-0.57847));
            dSX[141]=(float)(kx+l*0.20986); dSY[141]=(float)(ky+l*(1.0-0.21552));
            dSX[142]=(float)(kx+l*0.22969); dSY[142]=(float)(ky+l*(1.0-0.79372));
            dSX[143]=(float)(kx+l*0.2407); dSY[143]=(float)(ky+l*(1.0-0.78147));
            dSX[144]=(float)(kx+l*0.83483); dSY[144]=(float)(ky+l*(1.0-0.35725));
            dSX[145]=(float)(kx+l*0.74069); dSY[145]=(float)(ky+l*(1.0-0.87034));
            dSX[146]=(float)(kx+l*0.53127); dSY[146]=(float)(ky+l*(1.0-0.69099));
            dSX[147]=(float)(kx+l*0.73562); dSY[147]=(float)(ky+l*(1.0-0.89203));
            dSX[148]=(float)(kx+l*0.22449); dSY[148]=(float)(ky+l*(1.0-0.14296));
            dSX[149]=(float)(kx+l*0.74473); dSY[149]=(float)(ky+l*(1.0-0.85085));
            dSX[150]=(float)(kx+l*0.80492); dSY[150]=(float)(ky+l*(1.0-0.40119));
            dSX[151]=(float)(kx+l*0.66545); dSY[151]=(float)(ky+l*(1.0-0.14658));
            dSX[152]=(float)(kx+l*0.74401); dSY[152]=(float)(ky+l*(1.0-0.88545));
            dSX[153]=(float)(kx+l*0.16486); dSY[153]=(float)(ky+l*(1.0-0.81768));
            dSX[154]=(float)(kx+l*0.10909); dSY[154]=(float)(ky+l*(1.0-0.58963));
            dSX[155]=(float)(kx+l*0.36812); dSY[155]=(float)(ky+l*(1.0-0.71451));
            dSX[156]=(float)(kx+l*0.77083); dSY[156]=(float)(ky+l*(1.0-0.86754));
            dSX[157]=(float)(kx+l*0.19709); dSY[157]=(float)(ky+l*(1.0-0.16813));
            dSX[158]=(float)(kx+l*0.08257); dSY[158]=(float)(ky+l*(1.0-0.57901));
            dSX[159]=(float)(kx+l*0.81561); dSY[159]=(float)(ky+l*(1.0-0.38789));
            dSX[160]=(float)(kx+l*0.11613); dSY[160]=(float)(ky+l*(1.0-0.61403));
            dSX[161]=(float)(kx+l*0.16391); dSY[161]=(float)(ky+l*(1.0-0.10041));
            dSX[162]=(float)(kx+l*0.36024); dSY[162]=(float)(ky+l*(1.0-0.75178));
            dSX[163]=(float)(kx+l*0.73822); dSY[163]=(float)(ky+l*(1.0-0.84884));
            dSX[164]=(float)(kx+l*0.22963); dSY[164]=(float)(ky+l*(1.0-0.11442));
            dSX[165]=(float)(kx+l*0.01152); dSY[165]=(float)(ky+l*(1.0-0.27939));
            dSX[166]=(float)(kx+l*0.74314); dSY[166]=(float)(ky+l*(1.0-0.87522));
            dSX[167]=(float)(kx+l*0.22871); dSY[167]=(float)(ky+l*(1.0-0.134));
            dSX[168]=(float)(kx+l*0.14996); dSY[168]=(float)(ky+l*(1.0-0.54459));
            dSX[169]=(float)(kx+l*0.14354); dSY[169]=(float)(ky+l*(1.0-0.25589));
            dSX[170]=(float)(kx+l*0.0779); dSY[170]=(float)(ky+l*(1.0-0.2636));
            dSX[171]=(float)(kx+l*0.13208); dSY[171]=(float)(ky+l*(1.0-0.28005));
            dSX[172]=(float)(kx+l*0.2498); dSY[172]=(float)(ky+l*(1.0-0.75765));
            dSX[173]=(float)(kx+l*0.30859); dSY[173]=(float)(ky+l*(1.0-0.08592));
            dSX[174]=(float)(kx+l*0.03277); dSY[174]=(float)(ky+l*(1.0-0.25141));
            dSX[175]=(float)(kx+l*0.69026); dSY[175]=(float)(ky+l*(1.0-0.11579));
            dSX[176]=(float)(kx+l*0.70569); dSY[176]=(float)(ky+l*(1.0-0.20655));
            dSX[177]=(float)(kx+l*0.19796); dSY[177]=(float)(ky+l*(1.0-0.1327));
            dSX[178]=(float)(kx+l*0.10402); dSY[178]=(float)(ky+l*(1.0-0.18623));
            dSX[179]=(float)(kx+l*0.20623); dSY[179]=(float)(ky+l*(1.0-0.17315));
            dSX[180]=(float)(kx+l*0.14383); dSY[180]=(float)(ky+l*(1.0-0.16819));
            dSX[181]=(float)(kx+l*0.43416); dSY[181]=(float)(ky+l*(1.0-0.81161));
            dSX[182]=(float)(kx+l*0.21801); dSY[182]=(float)(ky+l*(1.0-0.1926));
            dSX[183]=(float)(kx+l*0.80582); dSY[183]=(float)(ky+l*(1.0-0.40684));
            dSX[184]=(float)(kx+l*0.47273); dSY[184]=(float)(ky+l*(1.0-0.66746));
            dSX[185]=(float)(kx+l*0.72923); dSY[185]=(float)(ky+l*(1.0-0.91807));
            dSX[186]=(float)(kx+l*0.21609); dSY[186]=(float)(ky+l*(1.0-0.14719));
            dSX[187]=(float)(kx+l*0.61592); dSY[187]=(float)(ky+l*(1.0-0.17603));
            dSX[188]=(float)(kx+l*0.25956); dSY[188]=(float)(ky+l*(1.0-0.74824));
            dSX[189]=(float)(kx+l*0.10157); dSY[189]=(float)(ky+l*(1.0-0.25437));
            dSX[190]=(float)(kx+l*0.34822); dSY[190]=(float)(ky+l*(1.0-0.74119));
            dSX[191]=(float)(kx+l*0.37535); dSY[191]=(float)(ky+l*(1.0-0.68263));
            dSX[192]=(float)(kx+l*0.11609); dSY[192]=(float)(ky+l*(1.0-0.25491));
            dSX[193]=(float)(kx+l*0.84751); dSY[193]=(float)(ky+l*(1.0-0.36326));
            dSX[194]=(float)(kx+l*0.48434); dSY[194]=(float)(ky+l*(1.0-0.71852));
            dSX[195]=(float)(kx+l*0.82894); dSY[195]=(float)(ky+l*(1.0-0.38072));
            dSX[196]=(float)(kx+l*0.23618); dSY[196]=(float)(ky+l*(1.0-0.78797));
            dSX[197]=(float)(kx+l*0.70894); dSY[197]=(float)(ky+l*(1.0-0.84481));
            dSX[198]=(float)(kx+l*0.21377); dSY[198]=(float)(ky+l*(1.0-0.08697));
            dSX[199]=(float)(kx+l*0.08777); dSY[199]=(float)(ky+l*(1.0-0.23077));
            dSX[200]=(float)(kx+l*0.4627); dSY[200]=(float)(ky+l*(1.0-0.68689));
            dSX[201]=(float)(kx+l*0.1064); dSY[201]=(float)(ky+l*(1.0-0.13423));
            dSX[202]=(float)(kx+l*0.34044); dSY[202]=(float)(ky+l*(1.0-0.71728));
            dSX[203]=(float)(kx+l*0.14377); dSY[203]=(float)(ky+l*(1.0-0.10488));
            dSX[204]=(float)(kx+l*0.83586); dSY[204]=(float)(ky+l*(1.0-0.39654));
            dSX[205]=(float)(kx+l*0.23719); dSY[205]=(float)(ky+l*(1.0-0.75877));
            dSX[206]=(float)(kx+l*0.72909); dSY[206]=(float)(ky+l*(1.0-0.83794));
            dSX[207]=(float)(kx+l*0.11163); dSY[207]=(float)(ky+l*(1.0-0.57717));
            dSX[208]=(float)(kx+l*0.82082); dSY[208]=(float)(ky+l*(1.0-0.38887));
            dSX[209]=(float)(kx+l*0.23973); dSY[209]=(float)(ky+l*(1.0-0.09762));
            dSX[210]=(float)(kx+l*0.18049); dSY[210]=(float)(ky+l*(1.0-0.7213));
            dSX[211]=(float)(kx+l*0.17251); dSY[211]=(float)(ky+l*(1.0-0.06261));
            dSX[212]=(float)(kx+l*0.73943); dSY[212]=(float)(ky+l*(1.0-0.1515));
            dSX[213]=(float)(kx+l*0.12257); dSY[213]=(float)(ky+l*(1.0-0.21737));
            dSX[214]=(float)(kx+l*0.72598); dSY[214]=(float)(ky+l*(1.0-0.87021));
            dSX[215]=(float)(kx+l*0.7244); dSY[215]=(float)(ky+l*(1.0-0.88142));
            dSX[216]=(float)(kx+l*0.21058); dSY[216]=(float)(ky+l*(1.0-0.83842));
            dSX[217]=(float)(kx+l*0.34401); dSY[217]=(float)(ky+l*(1.0-0.72108));
            dSX[218]=(float)(kx+l*0.65233); dSY[218]=(float)(ky+l*(1.0-0.15241));
            dSX[219]=(float)(kx+l*0.1184); dSY[219]=(float)(ky+l*(1.0-0.59815));
            dSX[220]=(float)(kx+l*0.20673); dSY[220]=(float)(ky+l*(1.0-0.09814));
            dSX[221]=(float)(kx+l*0.65673); dSY[221]=(float)(ky+l*(1.0-0.19377));
            dSX[222]=(float)(kx+l*0.46674); dSY[222]=(float)(ky+l*(1.0-0.7408));
            dSX[223]=(float)(kx+l*0.14444); dSY[223]=(float)(ky+l*(1.0-0.18892));
            dSX[224]=(float)(kx+l*0.44631); dSY[224]=(float)(ky+l*(1.0-0.72023));
            dSX[225]=(float)(kx+l*0.18501); dSY[225]=(float)(ky+l*(1.0-0.81523));
            dSX[226]=(float)(kx+l*0.67013); dSY[226]=(float)(ky+l*(1.0-0.17383));
            dSX[227]=(float)(kx+l*0.21007); dSY[227]=(float)(ky+l*(1.0-0.11003));
            dSX[228]=(float)(kx+l*0.28895); dSY[228]=(float)(ky+l*(1.0-0.79667));
            dSX[229]=(float)(kx+l*0.355); dSY[229]=(float)(ky+l*(1.0-0.77679));
            dSX[230]=(float)(kx+l*0.8031); dSY[230]=(float)(ky+l*(1.0-0.40707));
            dSX[231]=(float)(kx+l*0.20507); dSY[231]=(float)(ky+l*(1.0-0.23746));
            dSX[232]=(float)(kx+l*0.2091); dSY[232]=(float)(ky+l*(1.0-0.1445));
            dSX[233]=(float)(kx+l*0.69395); dSY[233]=(float)(ky+l*(1.0-0.87292));
            dSX[234]=(float)(kx+l*0.26225); dSY[234]=(float)(ky+l*(1.0-0.83517));
            dSX[235]=(float)(kx+l*0.46057); dSY[235]=(float)(ky+l*(1.0-0.66066));
            dSX[236]=(float)(kx+l*0.46715); dSY[236]=(float)(ky+l*(1.0-0.62083));
            dSX[237]=(float)(kx+l*0.15991); dSY[237]=(float)(ky+l*(1.0-0.16164));
            dSX[238]=(float)(kx+l*0.66818); dSY[238]=(float)(ky+l*(1.0-0.18336));
            dSX[239]=(float)(kx+l*0.1206); dSY[239]=(float)(ky+l*(1.0-0.20415));
            dSX[240]=(float)(kx+l*0.11134); dSY[240]=(float)(ky+l*(1.0-0.17899));
            dSX[241]=(float)(kx+l*0.81705); dSY[241]=(float)(ky+l*(1.0-0.3876));
            dSX[242]=(float)(kx+l*0.16158); dSY[242]=(float)(ky+l*(1.0-0.58197));
            dSX[243]=(float)(kx+l*0.71638); dSY[243]=(float)(ky+l*(1.0-0.92072));
            dSX[244]=(float)(kx+l*0.70824); dSY[244]=(float)(ky+l*(1.0-0.86881));
            dSX[245]=(float)(kx+l*0.21828); dSY[245]=(float)(ky+l*(1.0-0.07292));
            dSX[246]=(float)(kx+l*0.23573); dSY[246]=(float)(ky+l*(1.0-0.05748));
            dSX[247]=(float)(kx+l*0.11584); dSY[247]=(float)(ky+l*(1.0-0.70939));
            dSX[248]=(float)(kx+l*0.1235); dSY[248]=(float)(ky+l*(1.0-0.23567));
            dSX[249]=(float)(kx+l*0.18015); dSY[249]=(float)(ky+l*(1.0-0.73396));
            dSX[250]=(float)(kx+l*0.04505); dSY[250]=(float)(ky+l*(1.0-0.22103));
            dSX[251]=(float)(kx+l*0.75712); dSY[251]=(float)(ky+l*(1.0-0.89093));
            dSX[252]=(float)(kx+l*0.51855); dSY[252]=(float)(ky+l*(1.0-0.68719));
            dSX[253]=(float)(kx+l*0.20628); dSY[253]=(float)(ky+l*(1.0-0.78227));
            dSX[254]=(float)(kx+l*0.3027); dSY[254]=(float)(ky+l*(1.0-0.74326));
            dSX[255]=(float)(kx+l*0.72344); dSY[255]=(float)(ky+l*(1.0-0.86115));
            dSX[256]=(float)(kx+l*0.7823); dSY[256]=(float)(ky+l*(1.0-0.40698));
            dSX[257]=(float)(kx+l*0.80725); dSY[257]=(float)(ky+l*(1.0-0.36859));
            dSX[258]=(float)(kx+l*0.22767); dSY[258]=(float)(ky+l*(1.0-0.72875));
            dSX[259]=(float)(kx+l*0.8389); dSY[259]=(float)(ky+l*(1.0-0.36071));
            dSX[260]=(float)(kx+l*0.15643); dSY[260]=(float)(ky+l*(1.0-0.1861));
            dSX[261]=(float)(kx+l*0.70301); dSY[261]=(float)(ky+l*(1.0-0.13106));
            dSX[262]=(float)(kx+l*0.27509); dSY[262]=(float)(ky+l*(1.0-0.07504));
            dSX[263]=(float)(kx+l*0.26088); dSY[263]=(float)(ky+l*(1.0-0.7257));
            dSX[264]=(float)(kx+l*0.21206); dSY[264]=(float)(ky+l*(1.0-0.75771));
            dSX[265]=(float)(kx+l*0.13805); dSY[265]=(float)(ky+l*(1.0-0.58384));
            dSX[266]=(float)(kx+l*0.77447); dSY[266]=(float)(ky+l*(1.0-0.88097));
            dSX[267]=(float)(kx+l*0.24243); dSY[267]=(float)(ky+l*(1.0-0.76475));
            dSX[268]=(float)(kx+l*0.22454); dSY[268]=ky+l; // -0.01632
            dSX[269]=(float)(kx+l*0.46329); dSY[269]=(float)(ky+l*(1.0-0.66386));
            dSX[270]=(float)(kx+l*0.42856); dSY[270]=(float)(ky+l*(1.0-0.77059));
            dSX[271]=(float)(kx+l*0.09912); dSY[271]=(float)(ky+l*(1.0-0.23061));
            dSX[272]=(float)(kx+l*0.40031); dSY[272]=(float)(ky+l*(1.0-0.7123));
            dSX[273]=(float)(kx+l*0.41085); dSY[273]=(float)(ky+l*(1.0-0.68234));
            dSX[274]=(float)(kx+l*0.16843); dSY[274]=(float)(ky+l*(1.0-0.21484));
            dSX[275]=(float)(kx+l*0.19902); dSY[275]=(float)(ky+l*(1.0-0.74001));
            dSX[276]=(float)(kx+l*0.23913); dSY[276]=(float)(ky+l*(1.0-0.83891));
            dSX[277]=(float)(kx+l*0.52281); dSY[277]=(float)(ky+l*(1.0-0.68538));
            dSX[278]=(float)(kx+l*0.77193); dSY[278]=(float)(ky+l*(1.0-0.85292));
            dSX[279]=(float)(kx+l*0.62099); dSY[279]=(float)(ky+l*(1.0-0.1954));
            dSX[280]=(float)(kx+l*0.76508); dSY[280]=(float)(ky+l*(1.0-0.88685));
            dSX[281]=(float)(kx+l*0.17655); dSY[281]=(float)(ky+l*(1.0-0.19809));
            dSX[282]=(float)(kx+l*0.25752); dSY[282]=(float)(ky+l*(1.0-0.14649));
            dSX[283]=(float)(kx+l*0.41938); dSY[283]=(float)(ky+l*(1.0-0.66025));
            dSX[284]=(float)(kx+l*0.64649); dSY[284]=(float)(ky+l*(1.0-0.16984));
            dSX[285]=(float)(kx+l*0.83039); dSY[285]=(float)(ky+l*(1.0-0.36848));
            dSX[286]=(float)(kx+l*0.47482); dSY[286]=(float)(ky+l*(1.0-0.75725));
            dSX[287]=(float)(kx+l*0.36224); dSY[287]=(float)(ky+l*(1.0-0.72407));
            dSX[288]=(float)(kx+l*0.41691); dSY[288]=(float)(ky+l*(1.0-0.76211));
            dSX[289]=(float)(kx+l*0.71197); dSY[289]=(float)(ky+l*(1.0-0.88301));
            dSX[290]=(float)(kx+l*0.38875); dSY[290]=(float)(ky+l*(1.0-0.66923));
            dSX[291]=(float)(kx+l*0.65122); dSY[291]=(float)(ky+l*(1.0-0.2006));
            dSX[292]=(float)(kx+l*0.14963); dSY[292]=(float)(ky+l*(1.0-0.58176));
            dSX[293]=(float)(kx+l*0.12702); dSY[293]=(float)(ky+l*(1.0-0.20527));
            dSX[294]=(float)(kx+l*0.21471); dSY[294]=(float)(ky+l*(1.0-0.80336));
            dSX[295]=(float)(kx+l*0.1117); dSY[295]=(float)(ky+l*(1.0-0.58565));
            dSX[296]=(float)(kx+l*0.21964); dSY[296]=(float)(ky+l*(1.0-0.05787));
            dSX[297]=(float)(kx+l*0.52603); dSY[297]=(float)(ky+l*(1.0-0.68563));
            dSX[298]=(float)(kx+l*0.2513); dSY[298]=(float)(ky+l*(1.0-0.11038));
            dSX[299]=(float)(kx+l*0.23048); dSY[299]=(float)(ky+l*(1.0-0.81628));
            dSX[300]=(float)(kx+l*0.07918); dSY[300]=(float)(ky+l*(1.0-0.59745));
            dSX[301]=(float)(kx+l*0.39107); dSY[301]=(float)(ky+l*(1.0-0.70391));
            dSX[302]=(float)(kx+l*0.1921); dSY[302]=(float)(ky+l*(1.0-0.75531));
            dSX[303]=(float)(kx+l*0.69606); dSY[303]=(float)(ky+l*(1.0-0.21785));
            dSX[304]=(float)(kx+l*0.14619); dSY[304]=(float)(ky+l*(1.0-0.57905));
            dSX[305]=(float)(kx+l*0.79628); dSY[305]=(float)(ky+l*(1.0-0.3461));
            dSX[306]=(float)(kx+l*0.26276); dSY[306]=(float)(ky+l*(1.0-0.17608));
            dSX[307]=(float)(kx+l*0.32383); dSY[307]=(float)(ky+l*(1.0-0.74517));
            dSX[308]=(float)(kx+l*0.71259); dSY[308]=(float)(ky+l*(1.0-0.85462));
            dSX[309]=(float)(kx+l*0.11917); dSY[309]=(float)(ky+l*(1.0-0.25115));
            dSX[310]=(float)(kx+l*0.15771); dSY[310]=(float)(ky+l*(1.0-0.5723));
            dSX[311]=(float)(kx+l*0.74207); dSY[311]=(float)(ky+l*(1.0-0.86498));
            dSX[312]=(float)(kx+l*0.30246); dSY[312]=(float)(ky+l*(1.0-0.66994));
            dSX[313]=(float)(kx+l*0.20864); dSY[313]=(float)(ky+l*(1.0-0.16323));
            dSX[314]=(float)(kx+l*0.1412); dSY[314]=(float)(ky+l*(1.0-0.56028));
            dSX[315]=(float)(kx+l*0.82053); dSY[315]=(float)(ky+l*(1.0-0.35693));
            dSX[316]=(float)(kx+l*0.22989); dSY[316]=(float)(ky+l*(1.0-0.81021));
            dSX[317]=(float)(kx+l*0.10676); dSY[317]=(float)(ky+l*(1.0-0.20945));
            dSX[318]=(float)(kx+l*0.24867); dSY[318]=(float)(ky+l*(1.0-0.13241));
            dSX[319]=(float)(kx+l*0.18081); dSY[319]=(float)(ky+l*(1.0-0.77961));
            dSX[320]=(float)(kx+l*0.8051); dSY[320]=(float)(ky+l*(1.0-0.37642));
            dSX[321]=(float)(kx+l*0.71303); dSY[321]=(float)(ky+l*(1.0-0.87868));
            dSX[322]=(float)(kx+l*0.20502); dSY[322]=(float)(ky+l*(1.0-0.20587));
            dSX[323]=(float)(kx+l*0.47605); dSY[323]=(float)(ky+l*(1.0-0.68292));
            dSX[324]=(float)(kx+l*0.20975); dSY[324]=(float)(ky+l*(1.0-0.13444));
            dSX[325]=(float)(kx+l*0.7098); dSY[325]=(float)(ky+l*(1.0-0.85967));
            dSX[326]=(float)(kx+l*0.19912); dSY[326]=(float)(ky+l*(1.0-0.11887));
            dSX[327]=(float)(kx+l*0.21338); dSY[327]=(float)(ky+l*(1.0-0.15242));
            dSX[328]=(float)(kx+l*0.0816); dSY[328]=(float)(ky+l*(1.0-0.20505));
            dSX[329]=(float)(kx+l*0.81617); dSY[329]=(float)(ky+l*(1.0-0.37632));
            dSX[330]=(float)(kx+l*0.11072); dSY[330]=(float)(ky+l*(1.0-0.1742));
            dSX[331]=(float)(kx+l*0.44663); dSY[331]=(float)(ky+l*(1.0-0.7283));
            dSX[332]=(float)(kx+l*0.43758); dSY[332]=(float)(ky+l*(1.0-0.7116));
            dSX[333]=(float)(kx+l*0.11169); dSY[333]=(float)(ky+l*(1.0-0.58286));
            dSX[334]=(float)(kx+l*0.21739); dSY[334]=(float)(ky+l*(1.0-0.808));
            dSX[335]=(float)(kx+l*0.11504); dSY[335]=(float)(ky+l*(1.0-0.58542));
            dSX[336]=(float)(kx+l*0.22232); dSY[336]=(float)(ky+l*(1.0-0.10244));
            dSX[337]=(float)(kx+l*0.13277); dSY[337]=(float)(ky+l*(1.0-0.5679));
            dSX[338]=(float)(kx+l*0.41598); dSY[338]=(float)(ky+l*(1.0-0.73469));
            dSX[339]=(float)(kx+l*0.23372); dSY[339]=(float)(ky+l*(1.0-0.76431));
            dSX[340]=(float)(kx+l*0.32057); dSY[340]=(float)(ky+l*(1.0-0.75133));
            dSX[341]=(float)(kx+l*0.82525); dSY[341]=(float)(ky+l*(1.0-0.39564));
            dSX[342]=(float)(kx+l*0.15967); dSY[342]=(float)(ky+l*(1.0-0.17686));
            dSX[343]=(float)(kx+l*0.65594); dSY[343]=(float)(ky+l*(1.0-0.90155));
            dSX[344]=(float)(kx+l*0.71754); dSY[344]=(float)(ky+l*(1.0-0.87787));
            dSX[345]=(float)(kx+l*0.11191); dSY[345]=(float)(ky+l*(1.0-0.59932));
            dSX[346]=(float)(kx+l*0.2125); dSY[346]=(float)(ky+l*(1.0-0.05011));
            dSX[347]=(float)(kx+l*0.21381); dSY[347]=(float)(ky+l*(1.0-0.13874));
            dSX[348]=(float)(kx+l*0.32597); dSY[348]=(float)(ky+l*(1.0-0.702));
            dSX[349]=(float)(kx+l*0.84447); dSY[349]=(float)(ky+l*(1.0-0.377));
            dSX[350]=(float)(kx+l*0.23257); dSY[350]=(float)(ky+l*(1.0-0.0836));
            dSX[351]=(float)(kx+l*0.09849); dSY[351]=(float)(ky+l*(1.0-0.15117));
            dSX[352]=(float)(kx+l*0.25526); dSY[352]=(float)(ky+l*(1.0-0.156));
            dSX[353]=(float)(kx+l*0.46334); dSY[353]=(float)(ky+l*(1.0-0.69123));
            dSX[354]=(float)(kx+l*0.48943); dSY[354]=(float)(ky+l*(1.0-0.75123));
            dSX[355]=(float)(kx+l*0.7088); dSY[355]=(float)(ky+l*(1.0-0.8525));
            dSX[356]=(float)(kx+l*0.29138); dSY[356]=(float)(ky+l*(1.0-0.73165));
            dSX[357]=(float)(kx+l*0.15562); dSY[357]=(float)(ky+l*(1.0-0.80957));
            dSX[358]=(float)(kx+l*0.45633); dSY[358]=(float)(ky+l*(1.0-0.62115));
            dSX[359]=(float)(kx+l*0.22247); dSY[359]=(float)(ky+l*(1.0-0.73574));
            dSX[360]=(float)(kx+l*0.20278); dSY[360]=(float)(ky+l*(1.0-0.02718));
            dSX[361]=(float)(kx+l*0.1757); dSY[361]=(float)(ky+l*(1.0-0.77329));
            dSX[362]=(float)(kx+l*0.81154); dSY[362]=(float)(ky+l*(1.0-0.34851));
            dSX[363]=(float)(kx+l*0.63127); dSY[363]=(float)(ky+l*(1.0-0.19212));
            dSX[364]=(float)(kx+l*0.80712); dSY[364]=(float)(ky+l*(1.0-0.3727));
            dSX[365]=(float)(kx+l*0.79678); dSY[365]=(float)(ky+l*(1.0-0.37069));
            dSX[366]=(float)(kx+l*0.65493); dSY[366]=(float)(ky+l*(1.0-0.17201));
            dSX[367]=(float)(kx+l*0.11119); dSY[367]=(float)(ky+l*(1.0-0.55032));
            dSX[368]=(float)(kx+l*0.35914); dSY[368]=(float)(ky+l*(1.0-0.69928));
            dSX[369]=(float)(kx+l*0.84783); dSY[369]=(float)(ky+l*(1.0-0.38467));
            dSX[370]=(float)(kx+l*0.25637); dSY[370]=(float)(ky+l*(1.0-0.16449));
            dSX[371]=(float)(kx+l*0.4251); dSY[371]=(float)(ky+l*(1.0-0.75901));
            dSX[372]=(float)(kx+l*0.19824); dSY[372]=(float)(ky+l*(1.0-0.85476));
            dSX[373]=(float)(kx+l*0.49887); dSY[373]=(float)(ky+l*(1.0-0.69768));
            dSX[374]=(float)(kx+l*0.86102); dSY[374]=(float)(ky+l*(1.0-0.37142));
            dSX[375]=(float)(kx+l*0.19372); dSY[375]=(float)(ky+l*(1.0-0.80485));
            dSX[376]=(float)(kx+l*0.11601); dSY[376]=(float)(ky+l*(1.0-0.55327));
            dSX[377]=(float)(kx+l*0.72774); dSY[377]=(float)(ky+l*(1.0-0.87631));
            dSX[378]=(float)(kx+l*0.24923); dSY[378]=(float)(ky+l*(1.0-0.79912));
            dSX[379]=(float)(kx+l*0.4765); dSY[379]=(float)(ky+l*(1.0-0.68893));
            dSX[380]=(float)(kx+l*0.82476); dSY[380]=(float)(ky+l*(1.0-0.35662));
            dSX[381]=(float)(kx+l*0.73111); dSY[381]=(float)(ky+l*(1.0-0.17849));
            dSX[382]=(float)(kx+l*0.23645); dSY[382]=(float)(ky+l*(1.0-0.8192));
            dSX[383]=(float)(kx+l*0.24282); dSY[383]=(float)(ky+l*(1.0-0.79375));
            dSX[384]=(float)(kx+l*0.32193); dSY[384]=(float)(ky+l*(1.0-0.73014));
            dSX[385]=(float)(kx+l*0.18991); dSY[385]=(float)(ky+l*(1.0-0.76666));
            dSX[386]=(float)(kx+l*0.4943); dSY[386]=(float)(ky+l*(1.0-0.64545));
            dSX[387]=(float)(kx+l*0.45752); dSY[387]=(float)(ky+l*(1.0-0.68871));
            dSX[388]=(float)(kx+l*0.27258); dSY[388]=(float)(ky+l*(1.0-0.75787));
            dSX[389]=(float)(kx+l*0.48832); dSY[389]=(float)(ky+l*(1.0-0.66738));
            dSX[390]=(float)(kx+l*0.70802); dSY[390]=(float)(ky+l*(1.0-0.84396));
            dSX[391]=(float)(kx+l*0.36794); dSY[391]=(float)(ky+l*(1.0-0.63548));
            dSX[392]=(float)(kx+l*0.37738); dSY[392]=(float)(ky+l*(1.0-0.73531));
            dSX[393]=(float)(kx+l*0.23611); dSY[393]=(float)(ky+l*(1.0-0.10068));
            dSX[394]=(float)(kx+l*0.2211); dSY[394]=(float)(ky+l*(1.0-0.77825));
            dSX[395]=(float)(kx+l*0.21163); dSY[395]=(float)(ky+l*(1.0-0.12681));
            dSX[396]=(float)(kx+l*0.18089); dSY[396]=(float)(ky+l*(1.0-0.73562));
            dSX[397]=(float)(kx+l*0.66299); dSY[397]=(float)(ky+l*(1.0-0.22315));
            dSX[398]=(float)(kx+l*0.21315); dSY[398]=(float)(ky+l*(1.0-0.13477));
            dSX[399]=(float)(kx+l*0.71559); dSY[399]=(float)(ky+l*(1.0-0.89859));
            dSX[400]=(float)(kx+l*0.43222); dSY[400]=(float)(ky+l*(1.0-0.77103));
            dSX[401]=(float)(kx+l*0.87618); dSY[401]=(float)(ky+l*(1.0-0.37878));
            dSX[402]=(float)(kx+l*0.26296); dSY[402]=(float)(ky+l*(1.0-0.15748));
            dSX[403]=(float)(kx+l*0.1686); dSY[403]=(float)(ky+l*(1.0-0.20094));
            dSX[404]=(float)(kx+l*0.6815); dSY[404]=(float)(ky+l*(1.0-0.10764));
            dSX[405]=(float)(kx+l*0.37811); dSY[405]=(float)(ky+l*(1.0-0.70541));
            dSX[406]=(float)(kx+l*0.36094); dSY[406]=(float)(ky+l*(1.0-0.67579));
            dSX[407]=(float)(kx+l*0.82511); dSY[407]=(float)(ky+l*(1.0-0.41853));
            dSX[408]=(float)(kx+l*0.14138); dSY[408]=(float)(ky+l*(1.0-0.23299));
            dSX[409]=(float)(kx+l*0.67249); dSY[409]=(float)(ky+l*(1.0-0.20002));
            dSX[410]=(float)(kx+l*0.23894); dSY[410]=(float)(ky+l*(1.0-0.17142));
            dSX[411]=(float)(kx+l*0.75744); dSY[411]=(float)(ky+l*(1.0-0.14058));
            dSX[412]=(float)(kx+l*0.17161); dSY[412]=(float)(ky+l*(1.0-0.10035));
            dSX[413]=(float)(kx+l*0.48828); dSY[413]=(float)(ky+l*(1.0-0.66026));
            dSX[414]=(float)(kx+l*0.09221); dSY[414]=(float)(ky+l*(1.0-0.24637));
            dSX[415]=(float)(kx+l*0.16063); dSY[415]=(float)(ky+l*(1.0-0.59428));
            dSX[416]=(float)(kx+l*0.12893); dSY[416]=(float)(ky+l*(1.0-0.59674));
            dSX[417]=(float)(kx+l*0.35694); dSY[417]=(float)(ky+l*(1.0-0.78796));
            dSX[418]=(float)(kx+l*0.41546); dSY[418]=(float)(ky+l*(1.0-0.76092));
            dSX[419]=(float)(kx+l*0.16968); dSY[419]=(float)(ky+l*(1.0-0.83991));
            dSX[420]=(float)(kx+l*0.10334); dSY[420]=(float)(ky+l*(1.0-0.13985));
            dSX[421]=(float)(kx+l*0.16873); dSY[421]=(float)(ky+l*(1.0-0.03174));
            dSX[422]=(float)(kx+l*0.09976); dSY[422]=(float)(ky+l*(1.0-0.57833));
            dSX[423]=(float)(kx+l*0.73443); dSY[423]=(float)(ky+l*(1.0-0.86841));
            dSX[424]=(float)(kx+l*0.2138); dSY[424]=(float)(ky+l*(1.0-0.14457));
            dSX[425]=(float)(kx+l*0.18475); dSY[425]=(float)(ky+l*(1.0-0.73202));
            dSX[426]=(float)(kx+l*0.48298); dSY[426]=(float)(ky+l*(1.0-0.70441));
            dSX[427]=(float)(kx+l*0.18751); dSY[427]=(float)(ky+l*(1.0-0.17179));
            dSX[428]=(float)(kx+l*0.15242); dSY[428]=(float)(ky+l*(1.0-0.56863));
            dSX[429]=(float)(kx+l*0.47199); dSY[429]=(float)(ky+l*(1.0-0.60514));
            dSX[430]=(float)(kx+l*0.08912); dSY[430]=(float)(ky+l*(1.0-0.59353));
            dSX[431]=(float)(kx+l*0.14872); dSY[431]=(float)(ky+l*(1.0-0.63872));
            dSX[432]=(float)(kx+l*0.79864); dSY[432]=(float)(ky+l*(1.0-0.35493));
            dSX[433]=(float)(kx+l*0.35112); dSY[433]=(float)(ky+l*(1.0-0.78383));
            dSX[434]=(float)(kx+l*0.69891); dSY[434]=(float)(ky+l*(1.0-0.84894));
            dSX[435]=(float)(kx+l*0.80731); dSY[435]=(float)(ky+l*(1.0-0.39325));
            dSX[436]=(float)(kx+l*0.82968); dSY[436]=(float)(ky+l*(1.0-0.3552));
            dSX[437]=(float)(kx+l*0.72571); dSY[437]=(float)(ky+l*(1.0-0.19687));
            dSX[438]=(float)(kx+l*0.69843); dSY[438]=(float)(ky+l*(1.0-0.84846));
            dSX[439]=(float)(kx+l*0.84693); dSY[439]=(float)(ky+l*(1.0-0.40964));
            dSX[440]=(float)(kx+l*0.20669); dSY[440]=(float)(ky+l*(1.0-0.77071));
            dSX[441]=(float)(kx+l*0.12141); dSY[441]=(float)(ky+l*(1.0-0.58855));
            dSX[442]=(float)(kx+l*0.2279); dSY[442]=(float)(ky+l*(1.0-0.12276));
            dSX[443]=(float)(kx+l*0.83297); dSY[443]=(float)(ky+l*(1.0-0.39735));
            dSX[444]=(float)(kx+l*0.14542); dSY[444]=(float)(ky+l*(1.0-0.56013));
            dSX[445]=(float)(kx+l*0.12433); dSY[445]=(float)(ky+l*(1.0-0.20911));
            dSX[446]=(float)(kx+l*0.72573); dSY[446]=(float)(ky+l*(1.0-0.8408));
            dSX[447]=(float)(kx+l*0.09379); dSY[447]=(float)(ky+l*(1.0-0.55713));
            dSX[448]=(float)(kx+l*0.14829); dSY[448]=(float)(ky+l*(1.0-0.23154));
            dSX[449]=(float)(kx+l*0.4523); dSY[449]=(float)(ky+l*(1.0-0.67249));
            dSX[450]=(float)(kx+l*0.11726); dSY[450]=(float)(ky+l*(1.0-0.19693));
            dSX[451]=(float)(kx+l*0.11815); dSY[451]=(float)(ky+l*(1.0-0.25814));
            dSX[452]=(float)(kx+l*0.67506); dSY[452]=(float)(ky+l*(1.0-0.17122));
            dSX[453]=(float)(kx+l*0.83483); dSY[453]=(float)(ky+l*(1.0-0.40775));
            dSX[454]=(float)(kx+l*0.07239); dSY[454]=(float)(ky+l*(1.0-0.18731));
            dSX[455]=(float)(kx+l*0.3272); dSY[455]=(float)(ky+l*(1.0-0.7225));
            dSX[456]=(float)(kx+l*0.16136); dSY[456]=(float)(ky+l*(1.0-0.61121));
            dSX[457]=(float)(kx+l*0.21065); dSY[457]=(float)(ky+l*(1.0-0.13483));
            dSX[458]=(float)(kx+l*0.71889); dSY[458]=(float)(ky+l*(1.0-0.20099));
            dSX[459]=(float)(kx+l*0.36902); dSY[459]=(float)(ky+l*(1.0-0.7864));
            dSX[460]=(float)(kx+l*0.84165); dSY[460]=(float)(ky+l*(1.0-0.36644));
            dSX[461]=(float)(kx+l*0.68612); dSY[461]=(float)(ky+l*(1.0-0.12094));
            dSX[462]=(float)(kx+l*0.22926); dSY[462]=(float)(ky+l*(1.0-0.16182));
            dSX[463]=(float)(kx+l*0.18717); dSY[463]=(float)(ky+l*(1.0-0.11579));
            dSX[464]=(float)(kx+l*0.80286); dSY[464]=(float)(ky+l*(1.0-0.32103));
            dSX[465]=(float)(kx+l*0.25034); dSY[465]=(float)(ky+l*(1.0-0.04969));
            dSX[466]=(float)(kx+l*0.25102); dSY[466]=(float)(ky+l*(1.0-0.81178));
            dSX[467]=(float)(kx+l*0.40104); dSY[467]=(float)(ky+l*(1.0-0.70706));
            dSX[468]=(float)(kx+l*0.47589); dSY[468]=(float)(ky+l*(1.0-0.62965));
            dSX[469]=(float)(kx+l*0.4878); dSY[469]=(float)(ky+l*(1.0-0.77431));
            dSX[470]=(float)(kx+l*0.44168); dSY[470]=(float)(ky+l*(1.0-0.69073));
            dSX[471]=(float)(kx+l*0.10281); dSY[471]=(float)(ky+l*(1.0-0.2403));
            dSX[472]=(float)(kx+l*0.82296); dSY[472]=(float)(ky+l*(1.0-0.3797));
            dSX[473]=(float)(kx+l*0.48731); dSY[473]=(float)(ky+l*(1.0-0.69098));
            dSX[474]=(float)(kx+l*0.63263); dSY[474]=(float)(ky+l*(1.0-0.22947));
            dSX[475]=(float)(kx+l*0.67528); dSY[475]=(float)(ky+l*(1.0-0.20604));
            dSX[476]=(float)(kx+l*0.19472); dSY[476]=(float)(ky+l*(1.0-0.11076));
            dSX[477]=(float)(kx+l*0.84223); dSY[477]=(float)(ky+l*(1.0-0.34943));
            dSX[478]=(float)(kx+l*0.66502); dSY[478]=(float)(ky+l*(1.0-0.2078));
            dSX[479]=(float)(kx+l*0.5253); dSY[479]=(float)(ky+l*(1.0-0.70939));
            dSX[480]=(float)(kx+l*0.26947); dSY[480]=(float)(ky+l*(1.0-0.10746));
            dSX[481]=(float)(kx+l*0.22708); dSY[481]=(float)(ky+l*(1.0-0.7998));
            dSX[482]=(float)(kx+l*0.39279); dSY[482]=(float)(ky+l*(1.0-0.6481));
            dSX[483]=(float)(kx+l*0.36533); dSY[483]=(float)(ky+l*(1.0-0.74434));
            dSX[484]=(float)(kx+l*0.21924); dSY[484]=(float)(ky+l*(1.0-0.76278));
            dSX[485]=(float)(kx+l*0.17686); dSY[485]=(float)(ky+l*(1.0-0.18335));
            dSX[486]=(float)(kx+l*0.51587); dSY[486]=(float)(ky+l*(1.0-0.5951));
            dSX[487]=(float)(kx+l*0.8566); dSY[487]=(float)(ky+l*(1.0-0.40405));
            dSX[488]=(float)(kx+l*0.12652); dSY[488]=(float)(ky+l*(1.0-0.57607));
            dSX[489]=(float)(kx+l*0.22685); dSY[489]=(float)(ky+l*(1.0-0.79786));
            dSX[490]=(float)(kx+l*0.68578); dSY[490]=(float)(ky+l*(1.0-0.8548));
            dSX[491]=(float)(kx+l*0.38968); dSY[491]=(float)(ky+l*(1.0-0.73713));
            dSX[492]=(float)(kx+l*0.70811); dSY[492]=(float)(ky+l*(1.0-0.19062));
            dSX[493]=(float)(kx+l*0.46795); dSY[493]=(float)(ky+l*(1.0-0.68742));
            dSX[494]=(float)(kx+l*0.70386); dSY[494]=(float)(ky+l*(1.0-0.13081));
            dSX[495]=(float)(kx+l*0.12347); dSY[495]=(float)(ky+l*(1.0-0.57067));
            dSX[496]=(float)(kx+l*0.07499); dSY[496]=(float)(ky+l*(1.0-0.58753));
            dSX[497]=(float)(kx+l*0.26596); dSY[497]=(float)(ky+l*(1.0-0.75632));
            dSX[498]=(float)(kx+l*0.2196); dSY[498]=(float)(ky+l*(1.0-0.81844));
            dSX[499]=(float)(kx+l*0.22364); dSY[499]=(float)(ky+l*(1.0-0.11876));

            for (int i = 0; i < discreteSize;i++) {
                discreteSignalsX[i]=dSX[i];
                discreteSignalsY[i]=dSY[i];
            }
        }
    }
    protected Point2D.Double circlePoint() {
        Point2D.Double origin = new Point2D.Double(0,0);
        Point2D.Double signal = new Point2D.Double(0,0);
        do {
            signal.x = random()-0.5;
            signal.y = random()-0.5;
        } while (origin.distanceSq(signal) > 0.25 );
        // assertion: signal is on circle around origin with diameter 1, radius 0.5
        //System.out.printf("%f %f \n",signal.getX(),signal.getY());
        return signal;
    }

    /**
     * Generate a signal for the given distribution.
     *  The result goes into the global variables  SignalX 
     *  and  SignalY .
     *
     * @param pd          The specified distribution
     */
    protected void getSignal(PD pd) {
        pd.getSignal(this);
    }

    /**
     * Build a minimum-heap.
     *
     * @param i          The start of the interval
     * @param k          The end of the interval
     */
    protected void buildMinimumHeap(int i, int k) {
        int j = i;
        int son;

        while (2*j <= k) {
            if (2*j+1 <= k)
                if (nodes[sNodes[2*j]].sqrDist < nodes[sNodes[2*j+1]].sqrDist)
                    son = 2*j;
                else
                    son = 2*j + 1;
            else
                son = 2*j;

            if (nodes[sNodes[j]].sqrDist > nodes[sNodes[son]].sqrDist) {
                int exchange = sNodes[j];
                sNodes[j] = sNodes[son];
                sNodes[son] = exchange;
                j = son;
            } else
                return;
        }
    }

    public static class Result {
        public boolean repaint         = false;
        public boolean stop            = false;

        public void reset() {
            repaint         = false;
            stop            = false;
        }
    }

    /**
     * Do the learning. An input signal is generated for the given distribution
     *  and forwarded to the switched algorithm.
     *  Available Algorithms (abbrev):
     *   Growing Neural Gas (GNG),
     *   Growing Neural Gas w. Utility (GNG-U),
     *   Hard Competitive Learning (HCL),
     *   Neural Gas (NG),
     *   Neural Gas with Competitive Hebbian Learning (NGwCHL) and
     *   Competitive Hebbian Learning (CHL).
     *   LBG (LBG).
     *   LBG with Utility (LBG-U).
     *   Growing Grid (GG).
     *   Self-Organizing Map (SOM).
     *
     */
    public synchronized void learn(Result result) {
        result.reset();
        //
        // learning is done for stepSize steps
        //
//        Dimension d = getSize();
        int curr1stIdx, curr2ndIdx;
        int i, j, k, l, m;
        int x, y;
        int numError, minUtilityNode;
        int numNb;
        int toDelete;
        float dx, dy;
        float dstSgmExp;
        float bestSqrDist, nextBestDist;
        float h_l = 0.0f;
        float l_t = 0.0f;
        float maxError, minUtility;
        NodeGNG curr1st, curr2nd, n_i, node;

        SignalX = panelWidth/2; // d.width/2;
        SignalY = panelHeight/2; // d.height/2;

        valueGraph = 0.0f;
//        if (stopB)
//            return;
        
        // do stepSize adaption steps using random numSignals
        for (k = 0; k < stepSize; k++) {

            numSignals++;

            if (!algorithm.isDiscrete()) { // neither LBG nor LBG-U
                //
                // generate random signal and determine winner etc.
                //
                curr1stIdx = 0;
                curr2ndIdx = 0;
                curr1st = nodes[curr1stIdx];
                curr2nd = nodes[curr2ndIdx];
                numError = 0;
                minUtilityNode = 0;
                maxError = 0.0f;
                minUtility = Float.MAX_VALUE;
                bestSqrDist = Float.MAX_VALUE;
                nextBestDist = Float.MAX_VALUE;
                toDelete = -1;

                // Get a random signal out of the selected distribution
                getSignal(pd);

                // Save the numSignals
                lastSignalsX[k] = SignalX;
                lastSignalsY[k] = SignalY;

                // Locate the nearest node (winner) and the second-nearest (runner-up)
                for (i = 0 ; i < nNodes ; i++) {
                    n_i = nodes[i];
                    n_i.isWinner = n_i.isSecond = n_i.hasMoved = false;

                    if ((algorithm.isGNGType()) && (!noNewNodesGNGB) && ((numSignals % lambdaGNG) == 0))
                        n_i.isMostRecentlyInserted = false;

                    // Mark node without neighbors (one each run is enough)
                    if (n_i.numNeighbors() == 0)
                        toDelete = i;

                    // Calculate squared distance to input signal
                    n_i.sqrDist =
                            (n_i.x - SignalX) * (n_i.x - SignalX) +
                            (n_i.y - SignalY) * (n_i.y - SignalY);

                    // Decay error and utility
                    n_i.error *= decayFactor;
                    n_i.utility *= decayFactorUtility;
                    n_i.tau *= decayFactor;

                    // Keep track of current first and second winner
                    if (n_i.sqrDist <= bestSqrDist) { // changed to <= to handle strange cases with all nodes in one position
                        curr2nd = curr1st;
                        curr2ndIdx = curr1stIdx;
                        curr1st = n_i;
                        curr1stIdx = i;
                        nextBestDist = bestSqrDist;
                        bestSqrDist = n_i.sqrDist;
                    }

                    // Calculate node with maximal Error
                    if (n_i.error > maxError) {
                        maxError = n_i.error;
                        numError = i;
                    }

                    // Calculate node with minimum utility (GNG-U)
                    if (n_i.utility < minUtility) {
                        minUtility = n_i.utility;
                        minUtilityNode = i;
                    }
                }
                //
                // assertion: winner should be determined here
                //
                if (Float.isNaN(curr1st.x)){ // hack
                    System.out.printf("learn(): Float.isNaN(pick.x) stopping .....\n");
                    result.stop = true;
                    // stop();
                    return;
                }
                valueGraph += bestSqrDist;

                // Mark winner for teach-mode
                curr1st.isWinner = true;
                curr1st.x_old = curr1st.x;
                curr1st.y_old = curr1st.y;
                //System.out.printf("learn(): x_grid = %d  y_grid = %d \n", pick.x_grid, pick.x_grid); //hack bf
                // Adapt nodes

                // Trial: only adapt if signal is closer than delta
                //if (bestDist>400){
                //	break;
                //}

                //
                // do adaptation ("learning") according to current model
                //
                switch (algorithm) {
                //
                // Growing Neural Gas
                //
                case GNGU: //does not occur, since it is mapped to GNG
                case GNG:
                    // Find second-closest node (continued)
                    if (curr1stIdx == curr2ndIdx) {
                        curr2ndIdx++;
                        nextBestDist = Float.MAX_VALUE;
                        curr2nd = nodes[curr2ndIdx];
                    }
                    for (i = curr1stIdx + 1 ; i < nNodes ; i++) {
                        //n_i = nodes[i];
                        if (nodes[i].sqrDist < nextBestDist) {
                            curr2nd = nodes[i];
                            curr2ndIdx = i;
                            nextBestDist = nodes[i].sqrDist;
                        }
                    }
                    // Mark second for teach-mode
                    curr2nd.isSecond = true;
                    curr2nd.x_old = curr2nd.x;
                    curr2nd.y_old = curr2nd.y;


                    // Adaptation of Winner:
                    dx = epsilonGNG * (SignalX - curr1st.x);
                    dy = epsilonGNG * (SignalY - curr1st.y);
                    curr1st.adapt(dx,dy);

                    numNb = curr1st.numNeighbors();

                    // Adaptation of Neighbors:
                    int nn;
                    for (i = 0; i < numNb; i++) {
                        nn = curr1st.neighbor(i);

                        nodes[nn].hasMoved = true;
                        curr2nd.x_old = curr2nd.x;  // XXX TODO -- doesn't make sense, should probably be `nodes[nn]`
                        curr2nd.y_old = curr2nd.y;

                        dx = epsilonGNG2 * (SignalX - nodes[nn].x);
                        dy = epsilonGNG2 * (SignalY - nodes[nn].y);
                        nodes[nn].adapt(dx,dy);
                    }

                    // Accumulate square error
                    curr1st.error += bestSqrDist;

                    // Accumulate utility
                    curr1st.utility += (nextBestDist - bestSqrDist);

                    // Connect the two winning nodes
                    addEdge(curr1stIdx, curr2ndIdx);

                    // Calculate the age of the connected edges and delete too old edges
                    ageEdgesOfNode(curr1stIdx);

                    // Check inserting node and insert if necessary
                    if ( (numSignals % lambdaGNG) == 0 ) {
                        if (!noNewNodesGNGB) {
                            if (autoStopB) {
                                if (nNodes >= maxNodes || (GNG_U_B && (numSignals > 300000))) {
                                    result.stop = true;
                                    break;
                                }
                            }
                            final int nodeIdx = insertNode(numError, maximumErrorNeighbor(numError));
//                            result.insertedSound = nodeIdx != -1;
                        }
                    }

                    // Delete Node without Neighbors (not GNG-U)
                    if ((toDelete != -1) && (nNodes > 2) && !GNG_U_B )
                        deleteNode(toDelete);
                    // Delete Node with very low utility
                    else {
                        if ( maxError > minUtility * utilityGNG) {
                            if (GNG_U_B && (nNodes > 2)) {
                                deleteNode(minUtilityNode);
                            }
                        } else if (  (nNodes > 2) && (nNodes > maxNodes) ) {
                            // relevant if maxnodes is lowered during the simulation
                            deleteNode(minUtilityNode);
                        }
                    }

                    break;

                    //
                    // Hard Competitive Learning
                    //
                case HCL:
                    if ((numSignals >= t_max) && (variableB || autoStopB)) {
                        result.repaint  = true;
                        result.stop     = true;
                        break;
                    }

                    // Adapt picked node
                    if (variableB) {
                        e_t = (float)(e_i * Math.pow(e_f/e_i, numSignals /t_max));
                        dx = e_t * (SignalX - curr1st.x);
                        dy = e_t * (SignalY - curr1st.y);
                        curr1st.adapt(dx,dy);

                    } else {
                        dx = epsilon * (SignalX - curr1st.x);
                        dy = epsilon * (SignalY - curr1st.y);
                        curr1st.adapt(dx,dy);
                    }
                    break;

                    //
                    // Neural Gas
                    //
                case NG:
                    if (numSignals >= t_max) {
                        result.repaint  = true;
                        result.stop     = true;
                        break;
                    }

                    // Initialize the sorted node array, if necessary
                    if (nNodesChangedB) {
                        for (i = 1; i <= nNodes; i++)
                            sNodes[i] = i-1;
                        nNodesChangedB = false;
                    }

                    l_t = (float)(l_i * Math.pow(l_f/l_i, numSignals /t_max));
                    e_t = (float)(e_i * Math.pow(e_f/e_i, numSignals /t_max));

                    // Build a minimum heap
                    for (i = nNodes/2; i > 0; i--)
                        buildMinimumHeap(i, nNodes);

                    {
                        int decrNnodes = nNodes - 1;
                        int minimum;

                        // Fetch minimum, calculate new position and reheap
                        for (i = nNodes; i > 0; i--) {

                            minimum = sNodes[1];
                            sNodes[1] = sNodes[i];
                            sNodes[i] = minimum;
                            n_i = nodes[minimum];

                            // Mark second for teach-mode
                            if (i == decrNnodes)
                                nodes[minimum].isSecond = true;

                            h_l = (float)(Math.exp(-(nNodes - i)/l_t));

                            // Adapt nodes
                            dx = e_t * h_l * (SignalX - n_i.x);
                            dy = e_t * h_l * (SignalY - n_i.y);
                            n_i.adapt(dx, dy);

                            if ( (Math.abs(dx) < 1.0) &&
                                    (Math.abs(dy) < 1.0) &&
                                    (i < decrNnodes) )
                                break;

                            buildMinimumHeap(1, i-1);
                        }
                    }
                    break;

                    //
                    // Neural Gas with Competitive Hebbian Learning
                    //
                case NGCHL:
                    if (numSignals >= t_max) {
                        result.repaint  = true;
                        result.stop     = true;
                        break;
                    }

                    // Initialize the sorted node array, if necessary
                    if (nNodesChangedB) {
                        for (i = 1; i <= nNodes; i++)
                            sNodes[i] = i-1;
                        nNodesChangedB = false;
                    }

                    l_t = (float)(l_i * Math.pow(l_f/l_i, numSignals /t_max));
                    e_t = (float)(e_i * Math.pow(e_f/e_i, numSignals /t_max));

                    // Calculate the new edge-deleting term
                    maxEdgeAge = (int) (delEdge_i *
                            Math.pow(delEdge_f/delEdge_i, numSignals /t_max));

                    // Build a minimum heap
                    for (i = nNodes/2; i > 0; i--)
                        buildMinimumHeap(i, nNodes);

                    {
                        int decrNnodes = nNodes - 1;
                        int minimum;

                        // Fetch minimum, calculate new position and reheap
                        for (i = nNodes; i > 0; i--) {

                            minimum = sNodes[1];
                            sNodes[1] = sNodes[i];
                            sNodes[i] = minimum;
                            n_i = nodes[minimum];

                            // Mark second for teach-mode
                            if (i == decrNnodes) {
                                nodes[minimum].isSecond = true;
                                // This is the only difference between NG and NGwCHL:
                                // 	- Connect the first and the second node
                                addEdge(sNodes[nNodes], sNodes[nNodes - 1]);
                                // 	- Calculate the age of the connected edges and
                                //	  delete too old edges
                                ageEdgesOfNode(sNodes[nNodes]);
                            }

                            h_l = (float)(Math.exp(-(nNodes - i)/l_t));

                            // Adapt nodes
                            dx = e_t * h_l * (SignalX - n_i.x);
                            dy = e_t * h_l * (SignalY - n_i.y);
                            n_i.adapt(dx, dy);

                            if ( (Math.abs(dx) < 1.0) &&
                                    (Math.abs(dy) < 1.0) &&
                                    (i < decrNnodes) )
                                break;

                            buildMinimumHeap(1, i-1);
                        }
                    }
                    break;

                    //
                    // Competitive Hebbian Learning
                    //
                case CHL:
                    if ((numSignals >= 50000) && autoStopB) {
                        result.repaint  = true;
                        result.stop     = true;
                        break;
                    }
                    // Find second node (continued)
                    if (curr1stIdx == curr2ndIdx) {
                        curr2ndIdx++;
                        nextBestDist = Float.MAX_VALUE;
                        curr2nd = nodes[curr2ndIdx];
                    }
                    for (i = curr1stIdx + 1 ; i < nNodes ; i++) {
                        n_i = nodes[i];
                        if (n_i.sqrDist < nextBestDist) {
                            curr2nd = n_i;
                            curr2ndIdx = i;
                            nextBestDist = n_i.sqrDist;
                        }
                    }
                    // Mark second for teach-mode
                    curr2nd.isSecond = true;
                    curr2nd.x_old = curr2nd.x;
                    curr2nd.y_old = curr2nd.y;

                    // Connect the nodes
                    addEdge(curr1stIdx, curr2ndIdx);

                    break;

                    //
                    // Growing Grid
                    //
                case GG:
                case GR:
                    x = curr1st.x_grid;
                    y = curr1st.y_grid;
                    if ((x < 0)||(y<0)){
                        System.out.printf("learn(): Disaster, x_grid or y_grid < 0, x=%d, y=%d, pick.x = %f pick.y = %f continuing not! .....\n",x,y,curr1st.x, curr1st.y);
                        result.stop = true;
                        break;
                    }
                    // count numSignals (leads to density estimation by node density)
                    grid[x][y].node.tau+=1.0;

                    if (fineTuningB) {
                        int percent;
                        // tMax proportional to network size
                        float tMax = gridWidth * gridHeight * l_f;
                        if (algorithm.equals(Algorithm.GR)) {
                            tMax = gridWidth * gridHeight * 10;
                        }
                        e_t = (float)(e_i * Math.pow(e_f/e_i, (numSignals - numSignalsTmp)/tMax));
                        percent = (int) (((numSignals - numSignalsTmp)*100)/tMax);
                        if (percent >= 100) {
                            fineTuningS = "Fine-tuning (100%)";
                            log("fine tuning at 100%, calling stop ....");
                            result.repaint  = true;
                            result.stop     = true; // stop after fine-tuning
                            break;
                        }
                        fineTuningS = "Fine-tuning (" + String.valueOf(percent) + "%)";
                    } else {
                        e_t = e_i;
                    }

                    int dist;
                    for (i = 0; i < gridWidth; i++) {
                        for (j = 0; j < gridHeight; j++) {
                            if (torusGGB) {
                            // Manhattan Torus Distance
                                float xxx = Math.min(Math.abs(x-i), Math.min(x+Math.abs(gridWidth-1-i),i+Math.abs(gridWidth-1-x)));
                                dist = (int) xxx + Math.abs(y - j);
                            } else {
                                // Manhattan Distance
                                dist = Math.abs(x - i) + Math.abs(y - j);
                            }
                            node = grid[i][j].node;

                            dstSgmExp = (float) (Math.exp(-(dist*dist)/(2.0 * sigma * sigma)));
                            dx = e_t * dstSgmExp * (SignalX - node.x);
                            dy = e_t * dstSgmExp * (SignalY - node.y);
                            node.adapt(dx, dy);

                            if ( dstSgmExp > 0.5f )
                                node.isSecond = true;
                        }
                    }

                    // Check inserting nodes and insert if necessary
                    if ( (numSignals % (gridWidth * gridHeight * l_i) == 0) && (!fineTuningB) ) {
                        if (!noNewNodesGGB) {
                            if(enlargeGrid()) {
//                                result.insertedSound = true;
                                fineTuningB = false;
                            } else {
//                                result.insertedSound = false;
                                fineTuningB = true;
                                log("fine-tuning .....");

                            }
                            numSignalsTmp = numSignals;
//							if (inserted) {
//								break;
//							}
                        }
                    }

                    break;

                    //
                    // Self-Organizing Map
                    //
                case SOM:
                    if (numSignals >= t_max){
                        result.stop = true; // stop adaptation
                        break;
                    }

                    // Adapt nodes
                    x = curr1st.x_grid;
                    y = curr1st.y_grid;

                    e_t = (float)(e_i * Math.pow(e_f/e_i, numSignals /t_max));
                    sigma = (float)(sigma_i * Math.pow(sigma_f, numSignals /t_max));

                    for (i = 0; i < gridWidth; i++) {
                        for (j = 0; j < gridHeight; j++) {
                            // Distance
                            if (torusSOMB) {
                                // Manhattan Torus Distance
                                float xxx = Math.min(Math.abs(x-i), Math.min(x+Math.abs(gridWidth-1-i),i+Math.abs(gridWidth-1-x)));
                                dist = (int) xxx + Math.abs(y - j);
                            } else {
                                // Manhattan Distance
                                dist = Math.abs(x - i) + Math.abs(y - j);
                            }
                            node = grid[i][j].node;

                            dstSgmExp = (float) (Math.exp(-(dist*dist)/(2.0 * sigma * sigma)));
                            dx = e_t * dstSgmExp * (SignalX - node.x);
                            dy = e_t * dstSgmExp * (SignalY - node.y);
                            node.adapt(dx, dy);

                            if ( dstSgmExp > 0.5f )
                                node.isSecond = true;
                        }
                    }

                    break;
                case LBG:
                case LBGU:
                    // can not happen since in this branch only non-discrete distributions
                    // are handled
                    break;

                } // switch
            } else
            {
                //
                // discrete algorithm (LBG/LBG-U)
                //
                readyLBG_B = true;
                int noOfSignals, sig;
                int wa = 0, wb = 0;
                float bestDistLBG, nextBestDistLBG;
                float utility = 0.0f;
                float minUtilityLBG = Float.MAX_VALUE;
                float error = 0.0f;
                float maxErrorLBG = 0.0f;
                float errorAct = 0.0f;
                PointFloat2D tmpFP;

                curr1stIdx = 0;

                // loop over finite set of input numSignals
                for (j = 0; j < numDiscreteSignals; j++) {
                    curr1st = nodes[0];
                    curr2nd = nodes[0];
                    bestDistLBG = Float.MAX_VALUE;
                    nextBestDistLBG = Float.MAX_VALUE;

                    // Locate the nearest node and prepare for the second
                    for (i = 0; i < nNodes; i++) {
                        n_i = nodes[i];

                        // Calculate distance
                        n_i.sqrDist = (n_i.x - discreteSignalsX[j]) *
                                (n_i.x - discreteSignalsX[j]) +
                                (n_i.y - discreteSignalsY[j]) *
                                (n_i.y - discreteSignalsY[j]);

                        // Calculate node with best distance and prepare for second
                        if (n_i.sqrDist < bestDistLBG) {
                            curr2nd = curr1st;
                            curr1stIdx = i;
                            curr1st = n_i;
                            nextBestDistLBG = bestDistLBG;
                            bestDistLBG = n_i.sqrDist;
                        }
                    }

                    // Store distance to the nearest codebook vector (LBG-U)
                    discreteSignalsD1[j] = bestDistLBG;
                    errorAct += bestDistLBG;

                    // Add signal index to the winning codebook vector
                    curr1st.addSignal(j);

                    // Find node with second best distance
                    if (curr1st == curr2nd)
                        nextBestDistLBG = Float.MAX_VALUE;

                    for (i = curr1stIdx + 1; i < nNodes; i++) {
                        n_i = nodes[i];

                        if (n_i.sqrDist < nextBestDistLBG) {
                            curr2nd = n_i;
                            nextBestDistLBG = n_i.sqrDist;
                        }
                    }

                    // Store distance to the second nearest codebook vector (LBG-U)
                    discreteSignalsD2[j] = nextBestDistLBG;


                    valueGraph += bestDistLBG;
                }

                minUtilityLBG = Float.MAX_VALUE;
                maxErrorLBG = 0.0f;
                // Adapt selected nodes
                for (l = 0; l < nNodes; l++) {
                    n_i = nodes[l];
                    tmpFP = new PointFloat2D(n_i.x, n_i.y);
                    utility = 0.0f;
                    error = 0.0f;

                    noOfSignals = n_i.numSignals();

                    if (noOfSignals > 0) {
                        for (m = 0; m < noOfSignals; m++) {
                            sig = n_i.removeSignal();
                            dx = discreteSignalsX[sig];
                            dy = discreteSignalsY[sig];
                            n_i.adapt(dx, dy);

                            // calculate utility
                            utility += (discreteSignalsD2[sig] -
                                    discreteSignalsD1[sig]);
                            // calculate error
                            error += discreteSignalsD1[sig];

                        }
                        n_i.x /= (noOfSignals + 1.0f);
                        n_i.y /= (noOfSignals + 1.0f);

                        // nodes moved?
                        if (!tmpFP.equal(n_i.x, n_i.y)) {
                            n_i.hasMoved = true;
                            readyLBG_B = false;
                        } else {
                            n_i.hasMoved = false;
                        }

                        // determine minimum utility
                        if (utility < minUtilityLBG) {
                            wa = l;
                            minUtilityLBG = utility;
                        }
                        // determine maximum error
                        if (error > maxErrorLBG) {
                            wb = l;
                            maxErrorLBG = error;
                        }
                    }
                }

                if (LBG_U_B) {
                    if (DEBUG)
                        log("Act: " + errorAct
                                + ", Best: " + errorBestLBG_U);
                    if (readyLBG_B && (errorAct < errorBestLBG_U) ) {
                        // Save old positions
                        for (i = 0; i < nNodes; i++) {
                            C_best[i] = new PointFloat2D(nodes[i].x,
                                    nodes[i].y);
                        }
                        readyLBG_B = false;
                        errorBestLBG_U = errorAct;
                        // move node from wa to wb with a small offset (LBG-U)
                        // IMPORTANT: This works only for image data space!!!
                        dx = nodes[wb].x - nodes[wa].x;
                        dy = nodes[wb].y + 1 - nodes[wa].y;
                        nodes[wa].adapt(dx, dy);
                        //nodes[wa].x = nodes[wb].x;
                        //nodes[wa].y = nodes[wb].y + 1;
                    } else if (readyLBG_B && (errorAct > errorBestLBG_U) ) {
                        // Restore old positions
                        for (i = 0; i < nNodes; i++) {
                            nodes[i].x = C_best[i].x;
                            nodes[i].y = C_best[i].y;
                        }
                    }
                }
                if (readyLBG_B && autoStopB) {
                    result.repaint  = true;
                    result.stop     = true;
                }

            } // if (algorithm.isDiscrete())
//            if (stopB==true)
//                break;

        } // loop over stepSize

        return;
    }


    /**
     * The mouse-selected node.
     */
    protected NodeGNG pick;
    /**
     * The flag for mouse-selected node.
     */
    protected boolean pickFixed;

// repaint --> update() ---> paintComponent()
//	/**
//	 * Update the drawing area.
//	 *
//	 * @param g          The graphic context
//	 */
//    static int paintCounter =0;
//    static int prevSigs=0;
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy