All Downloads are FREE. Search and download functionalities are using the official Maven repository.

com.alee.extended.layout.TableLayout Maven / Gradle / Ivy

/*
 * This file is part of WebLookAndFeel library.
 *
 * WebLookAndFeel library is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * WebLookAndFeel library is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with WebLookAndFeel library.  If not, see .
 */

/*
 * ====================================================================
 *
 * The Clearthought Software License, Version 1.0
 *
 * Copyright (c) 2001 Daniel Barbalace.  All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *
 * 2. The original software may not be altered.  However, the classes
 *    provided may be subclasses as long as the subclasses are not
 *    packaged in the info.clearthought package or any subpackage of
 *    info.clearthought.
 *
 * THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESSED OR IMPLIED
 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
 * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR, AFFILATED BUSINESSES,
 * OR ANYONE ELSE BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF
 * USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
 * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 * ====================================================================
 */

package com.alee.extended.layout;

import java.awt.*;
import java.lang.reflect.Method;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;

/**
 * TableLayout is a layout manager that is more powerful than GridBagLayout yet much easier to
 * use.

Background

TableLayout is a layout manager that arranges components * in rows and columns like a spreadsheet. TableLayout allows each row or column to be a different * size. A row or column can be given an absolute size in pixels, a percentage of the available * space, or it can grow and shrink to fill the remaining space after other rows and columns have * been resized.

Using spreadsheet terminology, a cell is the intersection of a row and * column. Cells have finite, non-negative sizes measured in pixels. The dimensions of a cell * depend solely upon the dimensions of its row and column.

A component occupies a * rectangular group of one or more cells. The component can be aligned within those cells using * four vertical and six horizontal justifications. The vertical justifications are left, center, * right, and full. The horizontal justifications are left, center, right, full, leading, and * trailing. With full justification the component is stretched either vertically or horizontally * to fit the cell or group of cells.

Justification

Leading and trailing * justification are used to support languages that are read from right to left. See the * java.awt.ComponentOrientation class for details and http://java.sun.com/products/jfc/tsc/articles/bidi * for an introduction to component orientation and bidirectional text support. The leading * justification will align the component along the leading edge of the container and the trailing * justification will align the component along the trailing edge. There is no leading or trailing * justification along the vertical axis since all modern languages are read from top to bottom and * no bottom-to-top orientation is defined in java.awt.ComponentOrientation. *

For components using the ComponentOrientation.LEFT_TO_RIGHT orientation, the * leading edge is the left edge and the trailing edge is the right one. For components using the * ComponentOrientation.RIGHT_TO_LEFT orientation, the opposite is true. For * components that are using ComponentOrientation.UNKNOWN and for Java runtime * environments that do not support component orientation, left-to-right orientation is assumed for * backwards compatibility. *

* Gaps *

* Horizontal and vertical gaps can be placed * between rows and columns in two ways. If uniformed gaps are desired, the setHGap * and setVGap methods may be used. To vary the size of gaps, simply use empty rows * and columns with absolute sizes. Similiarly, to make a border around a container that does not * have insets, use empty rows and columns along the edges of the container. *

* Constraints *

* Using TableLayout is a simple two step process. First, create a grid * for your container by specifying row and column sizes using either a TableLayout constructor or * the insertRow and insertColumn methods. Second, add components to the * cells formed by the rows and columns. *

* When adding a component to a container that * uses TableLayout, you specify the component's constraints that state which cells the component * will occupy and how the component will be aligned. The constraints can be specified into two * ways. The TableLayoutConstraints class can be used to systematically specify the * constraints. This is useful to dynamic code, bean builders, and rapid application development * software.

For manual coding, a quicker and easier way to specify constraints is with * a short string in the form "x1, y1, x2, y2, hAlign, vAlign" where (x1, y1) identifies the top * left cell (column x1, row y1) for the component and (x2, y2) identfies the bottom right cell. x2 * and y2 are optional. If they are not specified, the component will occupy only one cell, (x1, * y1). hAlign and vAlign are also optional with default values of full justification. Alignments * may be spelt fully as in "LEFT" or abbreviated as in "L". The text is not case sensitive, but it * is recommended that uppercase is used for two reasons. First, these text values are in essence * constants. Second, some fonts use the same glyphs for representing a lowercase L and the number * one. Ex., "l" vs. "1". Even fonts that do not will often use similar glyphs so using uppercase * avoids confusion. *

* Dynamically altering the layout *

* Rows and columns can be * dynamically created, resized, and removed at any time, even if the container is visible. * Components will be shifted appropriately as rows and columns are inserted or removed, just as * cells are shifted in a spreadsheet. *

* Rows and columns can be made "hidden" or * effectively invisible by setting their size to zero. They can be shown again by setting their * size back to a non-zero value. This is very useful for toggle form elements without having to * remove individual components. *

* Preferred sizes *

* Often it is desireable to * make a row or column just large enough to ensure that all components contained partially or * wholly in that row or column are their preferred size. To make this easy, there is a constant * called PREFERRED that can be used to specify row or column sizes. There is another * constant called MINIMUM that does a similar task using components' minimum sizes * instead of their preferred sizes. *

* There is no corresponding MAXIMUM * constant for several reasons. First, it is mathematically impossible to honor both the minimum * and maximum sizes of more than one component when conflicts arise. For example, say components a * and b are in the same row. If a's maximum height is less than b's minimum height, then one of * these constraints must be violated. Since TableLayout is a complete, general Cartesian layout * manager, it would be possible to specify conflicting constraints if a MAXIMUM * constant existed.

Second, the ability to make a component grow up to a maximum size is * primarily of interest to layout managers like SpringLayout that have to balance the * sizes of components because the presence of one component affects the size of another. Other * than the effect of preferred and minimum size rows/columns, which are essentially convenient ways * of specifying absolute sizes, the existence and constraints of one component does not affect any * other components when using TableLayout. This is accomplished because rows and columns are * explicit in TableLayout. *

* Third, the ability to constrain a component to its maximum * size is subsumed by the ability to constrain it to its preferred size, which is precisely what * happens when a component is aligned using anything but full justification. In the case of full * justification, the component's maximum size is by definition unbounded. *

* Example *

*

 * import java.awt.*;
 * import javax.swing.*;
 * import com.alee.extended.layout.TableLayout;
 *
 * public class Preferred extends JFrame
 * {
 *     public static void main (String args[])
 *     {
 *         new Preferred();
 *     }
 *
 *     public Preferred ()
 *     {
 *         super("The Power of Preferred Sizes");
 *         setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
 *         Container pane = getContentPane();
 *
 *         // b - border
 *         // f - FILL
 *         // p - PREFERRED
 *         // vs - vertical space between labels and text fields
 *         // vg - vertical gap between form elements
 *         // hg - horizontal gap between form elements
 *
 *         double b = 10;
 *         double f = TableLayout.FILL;
 *         double p = TableLayout.PREFERRED;
 *         double vs = 5;
 *         double vg = 10;
 *         double hg = 10;
 *
 *         double size[][] =
 *             {{b, f, hg, p, hg, p, b},
 *              {b, p, vs, p, vg, p, vs, p, vg, p, vs, p, vg, p, b}};
 *
 *         TableLayout layout = new TableLayout(size);
 *         pane.setLayout (layout);
 *
 *         // Create all controls
 *         JLabel labelName    = new JLabel("Name");
 *         JLabel labelAddress = new JLabel("Address");
 *         JLabel labelCity    = new JLabel("City");
 *         JLabel labelState   = new JLabel("State");
 *         JLabel labelZip     = new JLabel("Zip");
 *
 *         JTextField textfieldName    = new JTextField(10);
 *         JTextField textfieldAddress = new JTextField(20);
 *         JTextField textfieldCity    = new JTextField(10);
 *         JTextField textfieldState   = new JTextField(2);
 *         JTextField textfieldZip     = new JTextField(5);
 *
 *         JButton buttonOk = new JButton("OK");
 *         JButton buttonCancel = new JButton("Cancel");
 *         JPanel panelButton = new JPanel();
 *         panelButton.add(buttonOk);
 *         panelButton.add(buttonCancel);
 *
 *         // Add all controls
 *         pane.add(labelName,        "1,  1, 5, 1");
 *         pane.add(textfieldName,    "1,  3, 5, 3");
 *         pane.add(labelAddress,     "1,  5, 5, 5");
 *         pane.add(textfieldAddress, "1,  7, 5, 7");
 *         pane.add(labelCity,        "1,  9");
 *         pane.add(textfieldCity,    "1, 11");
 *         pane.add(labelState,       "3,  9");
 *         pane.add(textfieldState,   "3, 11");
 *         pane.add(labelZip,         "5,  9");
 *         pane.add(textfieldZip,     "5, 11");
 *         pane.add(panelButton,      "1, 13, 5, 13");
 *
 *         pack();
 *         setResizable(false);
 *         show();
 *     }
 * }
 * 
* * @author Daniel E. Barbalace * @version 4.0 September 14, 2005 */ @SuppressWarnings ({ "ALL" }) public class TableLayout implements java.awt.LayoutManager2, java.io.Serializable, TableLayoutConstants { /* Note: In this file, a cr refers to either a column or a row. cr[C] always means column and cr[R] always means row. A cr size is either a column width or a row Height. TableLayout views columns and rows as being conceptually symmetric. Therefore, much of the code applies to both columns and rows, and the use of the cr terminology eliminates redundancy. Also, for ease of reading, z always indicates a parameter whose value is either C or R. */ /** * Default row/column size */ protected static final double defaultSize[][] = { { }, { } }; /** * Indicates a column */ protected static final int C = 0; /** * Indicates a row */ protected static final int R = 1; /** * Used to minimize reflection calls */ protected static boolean checkForComponentOrientationSupport = true; /** * Method used to get component orientation while preserving compatability with earlier versions * of java.awt.Container. Necessary for supporting older JDKs and MicroEdition versions of * Java. */ protected static Method methodGetComponentOrientation; /** * Sizes of crs expressed in absolute and relative terms */ protected double crSpec[][] = { null, null }; /** * Sizes of crs in pixels */ protected int crSize[][] = { null, null }; /** * Offsets of crs in pixels. The left boarder of column n is at crOffset[C][n] and the right * boarder is at cr[C][n + 1] for all columns including the last one. crOffset[C].length = * crSize[C].length + 1 */ protected int crOffset[][] = { null, null }; /** * List of components and their sizes */ protected LinkedList list; /** * Indicates whether or not the size of the cells are known for the last known size of the * container. If dirty is true or the container has been resized, the cell sizes must be * recalculated using calculateSize. */ protected boolean dirty; /** * Previous known width of the container */ protected int oldWidth; /** * Previous known height of the container */ protected int oldHeight; /** * Horizontal gap between columns */ protected int hGap; /** * Vertical gap between rows */ protected int vGap; /** * Constructs an instance of TableLayout. This TableLayout will have no columns or rows. * This constructor is most useful for bean-oriented programming and dynamically adding columns and rows. */ public TableLayout () { super (); init ( defaultSize[ C ], defaultSize[ R ] ); } /** * Constructs an instance of TableLayout with the specified horizontal and vertical gaps. * This TableLayout will have no columns or rows. * * @param hGap the horizontal gap in pixels * @param vGap the vertical gap in pixels */ public TableLayout ( int hGap, int vGap ) { super (); init ( defaultSize[ C ], defaultSize[ R ] ); setGaps ( hGap, vGap ); } /** * Constructs an instance of TableLayout. * * @param size widths of columns and heights of rows in the format, {{col0, col1, col2, ..., * colN}, {row0, row1, row2, ..., rowM}} If this parameter is invalid, the * TableLayout will have exactly one row and one column. */ public TableLayout ( double[][] size ) { super (); // Make sure columns and rows and nothing else is specified if ( ( size != null ) && ( size.length == 2 ) ) { init ( size[ C ], size[ R ] ); } else { throw new IllegalArgumentException ( "Parameter size should be an array, a[2], where a[0] is the " + "is an array of column widths and a[1] is an array or row " + "heights." ); } } /** * Constructs an instance of TableLayout with the specified horizontal and vertical gaps. * * @param size widths of columns and heights of rows in the format, {{col0, col1, col2, ..., * colN}, {row0, row1, row2, ..., rowM}} If this parameter is invalid, the * TableLayout will have exactly one row and one column. * @param hGap the horizontal gap in pixels * @param vGap the vertical gap in pixels */ public TableLayout ( double[][] size, int hGap, int vGap ) { this ( size ); setGaps ( hGap, vGap ); } /** * Constructs an instance of TableLayout. * * @param col widths of columns in the format, {{col0, col1, col2, ..., colN} * @param row heights of rows in the format, {{row0, row1, row2, ..., rowN} */ public TableLayout ( double[] col, double[] row ) { super (); init ( col, row ); } /** * Constructs an instance of TableLayout with the specified horizontal and vertical gaps. * * @param col widths of columns in the format, {{col0, col1, col2, ..., colN} * @param row heights of rows in the format, {{row0, row1, row2, ..., rowN} * @param hGap the horizontal gap in pixels * @param vGap the vertical gap in pixels */ public TableLayout ( double[] col, double[] row, int hGap, int vGap ) { this ( col, row ); setGaps ( hGap, vGap ); } /** * Initializes the TableLayout for all constructors. * * @param col widths of columns in the format, {{col0, col1, col2, ..., colN} * @param row heights of rows in the format, {{row0, row1, row2, ..., rowN} */ protected void init ( double[] col, double[] row ) { // Check parameters if ( col == null ) { throw new IllegalArgumentException ( "Parameter col cannot be null" ); } if ( row == null ) { throw new IllegalArgumentException ( "Parameter row cannot be null" ); } // Create new rows and columns crSpec[ C ] = new double[ col.length ]; crSpec[ R ] = new double[ row.length ]; // Copy rows and columns System.arraycopy ( col, 0, crSpec[ C ], 0, crSpec[ C ].length ); System.arraycopy ( row, 0, crSpec[ R ], 0, crSpec[ R ].length ); // Make sure rows and columns are valid for ( int counter = 0; counter < crSpec[ C ].length; counter++ ) { if ( ( crSpec[ C ][ counter ] < 0.0 ) && ( crSpec[ C ][ counter ] != FILL ) && ( crSpec[ C ][ counter ] != PREFERRED ) && ( crSpec[ C ][ counter ] != MINIMUM ) ) { crSpec[ C ][ counter ] = 0.0; } } for ( int counter = 0; counter < crSpec[ R ].length; counter++ ) { if ( ( crSpec[ R ][ counter ] < 0.0 ) && ( crSpec[ R ][ counter ] != FILL ) && ( crSpec[ R ][ counter ] != PREFERRED ) && ( crSpec[ R ][ counter ] != MINIMUM ) ) { crSpec[ R ][ counter ] = 0.0; } } // Create an empty list of components list = new LinkedList (); // Indicate that the cell sizes are not known dirty = true; } /** * Gets the constraints of a given component. * * @param component desired component * @return If the given component is found, the constraints associated with that component. If * the given component is null or is not found, null is returned. */ public TableLayoutConstraints getConstraints ( Component component ) { ListIterator iterator = list.listIterator ( 0 ); while ( iterator.hasNext () ) { Entry entry = ( Entry ) iterator.next (); if ( entry.component == component ) { return new TableLayoutConstraints ( entry.cr1[ C ], entry.cr1[ R ], entry.cr2[ C ], entry.cr2[ R ], entry.alignment[ C ], entry.alignment[ R ] ); } } return null; } /** * Sets the constraints of a given component. * * @param component desired component. This parameter cannot be null. * @param constraint new set of constraints. This parameter cannot be null. */ public void setConstraints ( Component component, TableLayoutConstraints constraint ) { // Check parameters if ( component == null ) { throw new IllegalArgumentException ( "Parameter component cannot be null." ); } else if ( constraint == null ) { throw new IllegalArgumentException ( "Parameter constraint cannot be null." ); } // Find and update constraints for the given component ListIterator iterator = list.listIterator ( 0 ); while ( iterator.hasNext () ) { Entry entry = ( Entry ) iterator.next (); if ( entry.component == component ) { iterator.set ( new Entry ( component, constraint ) ); } } } /** * Adjusts the number and sizes of rows in this layout. After calling this method, the caller * should request this layout manager to perform the layout. This can be done with the * following code: *

*

     *     layout.layoutContainer(container);
     *     container.repaint();
     * 
*

* or *

*

     *     window.pack()
     * 
*

* If this is not done, the changes in the layout will not be seen until the container is * resized. * * @param column widths of each of the columns * @see #getColumn */ public void setColumn ( double column[] ) { setCr ( C, column ); } /** * Adjusts the number and sizes of rows in this layout. After calling this method, the caller * should request this layout manager to perform the layout. This can be done with the * following code: *

* layout.layoutContainer(container); container.repaint(); *

* or *

*

     *     window.pack()
     * 
*

* If this is not done, the changes in the layout will not be seen until the container is * resized. * * @param row heights of each of the rows. This parameter cannot be null. * @see #getRow */ public void setRow ( double row[] ) { setCr ( R, row ); } /** * Sets the sizes of rows or columns for the methods setRow or setColumn. * * @param z indicates row or column * @param size new cr size */ protected void setCr ( int z, double size[] ) { // Copy crs crSpec[ z ] = new double[ size.length ]; System.arraycopy ( size, 0, crSpec[ z ], 0, crSpec[ z ].length ); // Make sure rows are valid for ( int counter = 0; counter < crSpec[ z ].length; counter++ ) { if ( ( crSpec[ z ][ counter ] < 0.0 ) && ( crSpec[ z ][ counter ] != FILL ) && ( crSpec[ z ][ counter ] != PREFERRED ) && ( crSpec[ z ][ counter ] != MINIMUM ) ) { crSpec[ z ][ counter ] = 0.0; } } // Indicate that the cell sizes are not known dirty = true; } /** * Adjusts the width of a single column in this layout. After calling this method, the caller * should request this layout manager to perform the layout. This can be done with the * following code: *

* layout.layoutContainer(container); container.repaint(); *

* or *

*

     *     window.pack()
     * 
*

* If this is not done, the changes in the layout will not be seen until the container is * resized. * * @param i zero-based index of column to set. If this parameter is not valid, an * ArrayOutOfBoundsException will be thrown. * @param size width of the column. This parameter cannot be null. * @see #getColumn */ public void setColumn ( int i, double size ) { setCr ( C, i, size ); } /** * Adjusts the height of a single row in this layout. After calling this method, the caller * should request this layout manager to perform the layout. This can be done with the * following code: *

* layout.layoutContainer(container); container.repaint(); *

* or *

*

     *     window.pack()
     * 
*

* If this is not done, the changes in the layout will not be seen until the container is * resized. * * @param i zero-based index of row to set. If this parameter is not valid, an * ArrayOutOfBoundsException will be thrown. * @param size height of the row. This parameter cannot be null. * @see #getRow */ public void setRow ( int i, double size ) { setCr ( R, i, size ); } /** * Sets the sizes of rows or columns for the methods setRow or setColumn. * * @param z indicates row or column * @param i indicates which cr to resize * @param size new cr size */ protected void setCr ( int z, int i, double size ) { // Make sure size is valid if ( ( size < 0.0 ) && ( size != FILL ) && ( size != PREFERRED ) && ( size != MINIMUM ) ) { size = 0.0; } // Copy new size crSpec[ z ][ i ] = size; // Indicate that the cell sizes are not known dirty = true; } /** * Gets the sizes of columns in this layout. * * @return widths of each of the columns * @see #setColumn */ public double[] getColumn () { // Copy columns double column[] = new double[ crSpec[ C ].length ]; System.arraycopy ( crSpec[ C ], 0, column, 0, column.length ); return column; } /** * Gets the height of a single row in this layout. * * @return height of the requested row * @see #setRow */ public double[] getRow () { // Copy rows double row[] = new double[ crSpec[ R ].length ]; System.arraycopy ( crSpec[ R ], 0, row, 0, row.length ); return row; } /** * Gets the width of a single column in this layout. * * @param i zero-based index of row to get. If this parameter is not valid, an * ArrayOutOfBoundsException will be thrown. * @return width of the requested column * @see #setRow */ public double getColumn ( int i ) { return crSpec[ C ][ i ]; } /** * Gets the sizes of a row in this layout. * * @param i zero-based index of row to get. If this parameter is not valid, an * ArrayOutOfBoundsException will be thrown. * @return height of each of the requested row * @see #setRow */ public double getRow ( int i ) { return crSpec[ R ][ i ]; } /** * Gets the number of columns in this layout. * * @return the number of columns */ public int getNumColumn () { return crSpec[ C ].length; } /** * Gets the number of rows in this layout. * * @return the number of rows */ public int getNumRow () { return crSpec[ R ].length; } /** * Gets the horizontal gap between colunns. * * @return the horizontal gap in pixels */ public int getHGap () { return hGap; } /** * Gets the vertical gap between rows. * * @return the vertical gap in pixels */ public int getVGap () { return vGap; } /** * Sets the horizontal gap between colunns. * * @param hGap the horizontal gap in pixels */ public void setHGap ( int hGap ) { if ( hGap >= 0 ) { this.hGap = hGap; } else { throw new IllegalArgumentException ( "Parameter hGap must be non-negative." ); } } /** * Sets the vertical gap between rows. * * @param vGap the vertical gap in pixels */ public void setVGap ( int vGap ) { if ( vGap >= 0 ) { this.vGap = vGap; } else { throw new IllegalArgumentException ( "Parameter vGap must be non-negative." ); } } /** * Sets horizontal gap between columns and vertical gap between rows. * * @param hGap the horizontal gap in pixels * @param vGap the vertical gap in pixels */ public void setGaps ( int hGap, int vGap ) { setHGap ( hGap ); setVGap ( vGap ); } /** * Inserts a column in this layout. All components to the right of the insertion point are * moved right one column. The container will need to be laid out after this method returns. * See setColumn. * * @param i zero-based index at which to insert the column * @param size size of the column to be inserted * @see #setColumn * @see #deleteColumn */ public void insertColumn ( int i, double size ) { insertCr ( C, i, size ); } /** * Inserts a row in this layout. All components below the insertion point are moved down one * row. The container will need to be laid out after this method returns. See * setRow. * * @param i zero-based index at which to insert the row * @param size size of the row to be inserted * @see #setRow * @see #deleteRow */ public void insertRow ( int i, double size ) { insertCr ( R, i, size ); } /** * Inserts a cr for the methods insertRow or insertColumn. * * @param z indicates row or column * @param i zero-based index at which to insert the cr * @param size size of cr being inserted */ public void insertCr ( int z, int i, double size ) { // Make sure position is valid if ( ( i < 0 ) || ( i > crSpec[ z ].length ) ) { throw new IllegalArgumentException ( "Parameter i is invalid. i = " + i + ". Valid range is [0, " + crSpec[ z ].length + "]." ); } // Make sure row size is valid if ( ( size < 0.0 ) && ( size != FILL ) && ( size != PREFERRED ) && ( size != MINIMUM ) ) { size = 0.0; } // Copy crs double cr[] = new double[ crSpec[ z ].length + 1 ]; System.arraycopy ( crSpec[ z ], 0, cr, 0, i ); System.arraycopy ( crSpec[ z ], i, cr, i + 1, crSpec[ z ].length - i ); // Insert cr cr[ i ] = size; crSpec[ z ] = cr; // Move all components that are below the new cr ListIterator iterator = list.listIterator ( 0 ); while ( iterator.hasNext () ) { // Get next entry Entry entry = ( Entry ) iterator.next (); // Is the first cr below the new cr if ( entry.cr1[ z ] >= i ) // Move first cr { entry.cr1[ z ]++; } // Is the second cr below the new cr if ( entry.cr2[ z ] >= i ) // Move second cr { entry.cr2[ z ]++; } } // Indicate that the cell sizes are not known dirty = true; } /** * Deletes a column in this layout. All components to the right of the deletion point are moved * left one column. The container will need to be laid out after this method returns. See * setColumn. * * @param i zero-based index of column to delete * @see #setColumn * @see #deleteColumn */ public void deleteColumn ( int i ) { deleteCr ( C, i ); } /** * Deletes a row in this layout. All components below the deletion point are moved up one row. * The container will need to be laid out after this method returns. See setRow. * There must be at least two rows in order to delete a row. * * @param i zero-based index of row to delete * @see #setRow * @see #deleteRow */ public void deleteRow ( int i ) { deleteCr ( R, i ); } /** * Deletes a cr for the methods deleteRow or deleteColumn. * * @param z indicates row or column * @param i zero-based index of cr to delete */ protected void deleteCr ( int z, int i ) { // Make sure position is valid if ( ( i < 0 ) || ( i >= crSpec[ z ].length ) ) { throw new IllegalArgumentException ( "Parameter i is invalid. i = " + i + ". Valid range is [0, " + ( crSpec[ z ].length - 1 ) + "]." ); } // Copy rows double cr[] = new double[ crSpec[ z ].length - 1 ]; System.arraycopy ( crSpec[ z ], 0, cr, 0, i ); System.arraycopy ( crSpec[ z ], i + 1, cr, i, crSpec[ z ].length - i - 1 ); // Delete row crSpec[ z ] = cr; // Move all components that are to below the row deleted ListIterator iterator = list.listIterator ( 0 ); while ( iterator.hasNext () ) { // Get next entry Entry entry = ( Entry ) iterator.next (); // Is the first row below the new row if ( entry.cr1[ z ] > i ) // Move first row { entry.cr1[ z ]--; } // Is the second row below the new row if ( entry.cr2[ z ] > i ) // Move second row { entry.cr2[ z ]--; } } // Indicate that the cell sizes are not known dirty = true; } /** * Converts this TableLayout to a string. * * @return a string representing the columns and row sizes in the form "{{col0, col1, col2, ..., * colN}, {row0, row1, row2, ..., rowM}}" */ public String toString () { int counter; String value = "TableLayout {{"; if ( crSpec[ C ].length > 0 ) { for ( counter = 0; counter < crSpec[ C ].length - 1; counter++ ) { value += crSpec[ C ][ counter ] + ", "; } value += crSpec[ C ][ crSpec[ C ].length - 1 ] + "}, {"; } else { value += "}, {"; } if ( crSpec[ R ].length > 0 ) { for ( counter = 0; counter < crSpec[ R ].length - 1; counter++ ) { value += crSpec[ R ][ counter ] + ", "; } value += crSpec[ R ][ crSpec[ R ].length - 1 ] + "}}"; } else { value += "}}"; } return value; } /** * Determines whether or not there are any components with invalid constraints. An invalid * constraint is one that references a non-existing row or column. For example, on a table with * five rows, row -1 and row 5 are both invalid. Valid rows are 0 through 4, inclusively. This * method is useful for debugging. * * @return a list of TableLayout.Entry instances refering to the invalid constraints and * corresponding components * @see #getOverlappingEntry */ public List getInvalidEntry () { LinkedList listInvalid = new LinkedList (); try { ListIterator iterator = list.listIterator ( 0 ); while ( iterator.hasNext () ) { Entry entry = ( Entry ) iterator.next (); if ( ( entry.cr1[ R ] < 0 ) || ( entry.cr1[ C ] < 0 ) || ( entry.cr2[ R ] >= crSpec[ R ].length ) || ( entry.cr2[ C ] >= crSpec[ C ].length ) ) { listInvalid.add ( entry.copy () ); } } } catch ( CloneNotSupportedException error ) { throw new RuntimeException ( "Unexpected CloneNotSupportedException" ); } return listInvalid; } /** * Gets a list of overlapping components and their constraints. Two components overlap if they * cover at least one common cell. This method is useful for debugging. * * @return a list of zero or more TableLayout.Entry instances * @see #getInvalidEntry */ public List getOverlappingEntry () { LinkedList listOverlapping = new LinkedList (); try { // Count contraints int numEntry = list.size (); // If there are no components, they can't be overlapping if ( numEntry == 0 ) { return listOverlapping; } // Put entries in an array Entry entry[] = ( Entry[] ) list.toArray ( new Entry[ numEntry ] ); // Check all components for ( int knowUnique = 1; knowUnique < numEntry; knowUnique++ ) { for ( int checking = knowUnique - 1; checking >= 0; checking-- ) { if ( ( ( entry[ checking ].cr1[ C ] >= entry[ knowUnique ].cr1[ C ] ) && ( entry[ checking ].cr1[ C ] <= entry[ knowUnique ].cr2[ C ] ) && ( entry[ checking ].cr1[ R ] >= entry[ knowUnique ].cr1[ R ] ) && ( entry[ checking ].cr1[ R ] <= entry[ knowUnique ].cr2[ R ] ) ) || ( ( entry[ checking ].cr2[ C ] >= entry[ knowUnique ].cr1[ C ] ) && ( entry[ checking ].cr2[ C ] <= entry[ knowUnique ].cr2[ C ] ) && ( entry[ checking ].cr2[ R ] >= entry[ knowUnique ].cr1[ R ] ) && ( entry[ checking ].cr2[ R ] <= entry[ knowUnique ].cr2[ R ] ) ) ) { listOverlapping.add ( entry[ checking ].copy () ); } } } } catch ( CloneNotSupportedException error ) { throw new RuntimeException ( "Unexpected CloneNotSupportedException" ); } return listOverlapping; } /** * Calculates the sizes of the rows and columns based on the absolute and relative sizes * specified in crSpec[R] and crSpec[C] and the size of the container. * The result is stored in crSize[R] and crSize[C]. * * @param container container using this TableLayout */ protected void calculateSize ( Container container ) { // Get the container's insets Insets inset = container.getInsets (); // Get the size of the container's available space Dimension d = container.getSize (); int availableWidth = d.width - inset.left - inset.right; int availableHeight = d.height - inset.top - inset.bottom; // Compensate for horiztonal and vertical gaps if ( crSpec[ C ].length > 0 ) { availableWidth -= hGap * ( crSpec[ C ].length - 1 ); } if ( crSpec[ R ].length > 0 ) { availableHeight -= vGap * ( crSpec[ R ].length - 1 ); } // Create array to hold actual sizes in pixels crSize[ C ] = new int[ crSpec[ C ].length ]; crSize[ R ] = new int[ crSpec[ R ].length ]; // Assign absolute sizes (must be done before assignPrefMinSize) availableWidth = assignAbsoluteSize ( C, availableWidth ); availableHeight = assignAbsoluteSize ( R, availableHeight ); // Assign preferred and minimum sizes (must be done after assignAbsoluteSize) availableWidth = assignPrefMinSize ( C, availableWidth, MINIMUM ); availableWidth = assignPrefMinSize ( C, availableWidth, PREFERRED ); availableHeight = assignPrefMinSize ( R, availableHeight, MINIMUM ); availableHeight = assignPrefMinSize ( R, availableHeight, PREFERRED ); // Assign relative sizes availableWidth = assignRelativeSize ( C, availableWidth ); availableHeight = assignRelativeSize ( R, availableHeight ); // Assign fill sizes assignFillSize ( C, availableWidth ); assignFillSize ( R, availableHeight ); // Calculate cr offsets for effeciency calculateOffset ( C, inset ); calculateOffset ( R, inset ); // Indicate that the size of the cells are known for the container's // current size dirty = false; oldWidth = d.width; oldHeight = d.height; } /** * Assigns absolute sizes. * * @param z indicates row or column * @param availableSize amount of space available in the container * @return the amount of space available after absolute crs have been assigned sizes */ protected int assignAbsoluteSize ( int z, int availableSize ) { int numCr = crSpec[ z ].length; for ( int counter = 0; counter < numCr; counter++ ) { if ( ( crSpec[ z ][ counter ] >= 1.0 ) || ( crSpec[ z ][ counter ] == 0.0 ) ) { crSize[ z ][ counter ] = ( int ) ( crSpec[ z ][ counter ] + 0.5 ); availableSize -= crSize[ z ][ counter ]; } } return availableSize; } /** * Assigns relative sizes. * * @param z indicates row or column * @param availableSize amount of space available in the container * @return the amount of space available after relative crs have been assigned sizes */ protected int assignRelativeSize ( int z, int availableSize ) { int relativeSize = ( availableSize < 0 ) ? 0 : availableSize; int numCr = crSpec[ z ].length; for ( int counter = 0; counter < numCr; counter++ ) { if ( ( crSpec[ z ][ counter ] > 0.0 ) && ( crSpec[ z ][ counter ] < 1.0 ) ) { crSize[ z ][ counter ] = ( int ) ( crSpec[ z ][ counter ] * relativeSize + 0.5 ); availableSize -= crSize[ z ][ counter ]; } } return availableSize; } /** * Assigns FILL sizes. * * @param z indicates row or column * @param availableSize amount of space available in the container */ protected void assignFillSize ( int z, int availableSize ) { // Skip if there is no more space to allocate if ( availableSize <= 0 ) { return; } // Count the number of "fill" cells int numFillSize = 0; int numCr = crSpec[ z ].length; for ( int counter = 0; counter < numCr; counter++ ) { if ( crSpec[ z ][ counter ] == FILL ) { numFillSize++; } } // If numFillSize is zero, the if statement below will always evaluate to // false and the division will not occur. // If there are more than one "fill" cell, slack may occur due to rounding // errors int slackSize = availableSize; // Assign "fill" cells equal amounts of the remaining space for ( int counter = 0; counter < numCr; counter++ ) { if ( crSpec[ z ][ counter ] == FILL ) { crSize[ z ][ counter ] = availableSize / numFillSize; slackSize -= crSize[ z ][ counter ]; } } // Assign one pixel of slack to each FILL cr, starting at the last one, // until all slack has been consumed for ( int counter = numCr - 1; ( counter >= 0 ) && ( slackSize > 0 ); counter-- ) { if ( crSpec[ z ][ counter ] == FILL ) { crSize[ z ][ counter ]++; slackSize--; } } } /** * Calculates the offset of each cr. * * @param z indicates row or column */ protected void calculateOffset ( int z, Insets inset ) { int numCr = crSpec[ z ].length; crOffset[ z ] = new int[ numCr + 1 ]; crOffset[ z ][ 0 ] = ( z == C ) ? inset.left : inset.top; for ( int counter = 0; counter < numCr; counter++ ) { crOffset[ z ][ counter + 1 ] = crOffset[ z ][ counter ] + crSize[ z ][ counter ]; } } /** * Assigned sizes to preferred and minimum size columns and rows. This reduces the available * width and height. Minimum widths/heights must be calculated first because they affect * preferred widths/heights, but not vice versa. The end result is that any component contained * wholly or partly in a column/row of minimum/preferred width or height will get at least its * minimum/preferred width or height, respectively. * * @param z indicates row or column * @param availableSize amount of space available in the container * @param typeOfSize indicates preferred or minimum * @return the amount of space available after absolute crs have been assigned sizes */ protected int assignPrefMinSize ( int z, int availableSize, double typeOfSize ) { // Get variables referring to columns or rows (crs) int numCr = crSpec[ z ].length; // Address every cr for ( int counter = 0; counter < numCr; counter++ ) // Is the current cr a preferred/minimum (based on typeOfSize) size { if ( crSpec[ z ][ counter ] == typeOfSize ) { // Assume a maximum width of zero int maxSize = 0; // Find maximum preferred/min width of all components completely // or partially contained within this cr ListIterator iterator = list.listIterator ( 0 ); nextComponent: while ( iterator.hasNext () ) { Entry entry = ( Entry ) iterator.next (); // Skip invalid entries if ( ( entry.cr1[ z ] < 0 ) || ( entry.cr2[ z ] >= numCr ) ) { continue nextComponent; } // Find the maximum desired size of this cr based on all crs // the current component occupies if ( ( entry.cr1[ z ] <= counter ) && ( entry.cr2[ z ] >= counter ) ) { // Setup size and number of adjustable crs Dimension p = ( typeOfSize == PREFERRED ) ? entry.component.getPreferredSize () : entry.component.getMinimumSize (); int size = ( p == null ) ? 0 : ( ( z == C ) ? p.width : p.height ); int numAdjustable = 0; // Calculate for preferred size if ( typeOfSize == PREFERRED ) // Consider all crs this component occupies { for ( int entryCr = entry.cr1[ z ]; entryCr <= entry.cr2[ z ]; entryCr++ ) { // Subtract absolute, relative, and minumum cr // sizes, which have already been calculated if ( ( crSpec[ z ][ entryCr ] >= 0.0 ) || ( crSpec[ z ][ entryCr ] == MINIMUM ) ) { size -= crSize[ z ][ entryCr ]; } // Count preferred/min width columns else if ( crSpec[ z ][ entryCr ] == PREFERRED ) { numAdjustable++; } // Skip any component that occupies a fill cr // because the fill should fulfill the size // requirements else if ( crSpec[ z ][ entryCr ] == FILL ) { continue nextComponent; } } } // Calculate for minimum size else // Consider all crs this component occupies { for ( int entryCr = entry.cr1[ z ]; entryCr <= entry.cr2[ z ]; entryCr++ ) { // Subtract absolute and relative cr sizes, which // have already been calculated if ( crSpec[ z ][ entryCr ] >= 0.0 ) { size -= crSize[ z ][ entryCr ]; } // Count preferred/min width columns else if ( ( crSpec[ z ][ entryCr ] == PREFERRED ) || ( crSpec[ z ][ entryCr ] == MINIMUM ) ) { numAdjustable++; } // Skip any component that occupies a fill cr // because the fill should fulfill the size // requirements else if ( crSpec[ z ][ entryCr ] == FILL ) { continue nextComponent; } } } // Divide the size evenly among the adjustable crs size = ( int ) Math.ceil ( size / ( double ) numAdjustable ); // Take the maximumn size if ( maxSize < size ) { maxSize = size; } } } // Assign preferred size crSize[ z ][ counter ] = maxSize; // Reduce available size availableSize -= maxSize; } } return availableSize; } /** * To lay out the specified container using this layout. This method reshapes the components in * the specified target container in order to satisfy the constraints of all components. *

* User code should not have to call this method directly. * * @param container container being served by this layout manager */ public void layoutContainer ( Container container ) { // Calculate sizes if container has changed size or components were added Dimension d = container.getSize (); if ( dirty || ( d.width != oldWidth ) || ( d.height != oldHeight ) ) { calculateSize ( container ); } // Get component orientation and insets ComponentOrientation co = getComponentOrientation ( container ); boolean isRightToLeft = ( co != null ) && !co.isLeftToRight (); Insets insets = container.getInsets (); // Get components Component component[] = container.getComponents (); // Layout components for ( int counter = 0; counter < component.length; counter++ ) { try { // Get the entry for the next component ListIterator iterator = list.listIterator ( 0 ); Entry entry = null; while ( iterator.hasNext () ) { entry = ( Entry ) iterator.next (); if ( entry.component == component[ counter ] ) { break; } else { entry = null; } } // Skip any components that have not been place in a specific cell, // setting the skip component's bounds to zero if ( entry == null ) { component[ counter ].setBounds ( 0, 0, 0, 0 ); continue; } // The following block of code has been optimized so that the // preferred size of the component is only obtained if it is // needed. There are components in which the getPreferredSize // method is extremely expensive, such as data driven controls // with a large amount of data. // Get the preferred size of the component int preferredWidth = 0; int preferredHeight = 0; if ( ( entry.alignment[ C ] != FULL ) || ( entry.alignment[ R ] != FULL ) ) { Dimension preferredSize = component[ counter ].getPreferredSize (); preferredWidth = preferredSize.width; preferredHeight = preferredSize.height; } // Calculate the coordinates and size of the component int value[] = calculateSizeAndOffset ( entry, preferredWidth, true ); int x = value[ 0 ]; int w = value[ 1 ]; value = calculateSizeAndOffset ( entry, preferredHeight, false ); int y = value[ 0 ]; int h = value[ 1 ]; // Compensate for component orientation. if ( isRightToLeft ) { x = d.width - x - w + insets.left - insets.right; } // Move and resize component component[ counter ].setBounds ( x, y, w, h ); } catch ( Exception error ) { // If any error occurs, set the bounds of this component to zero // and continue component[ counter ].setBounds ( 0, 0, 0, 0 ); continue; } } } /** * Gets the container's component orientation. If a JDK that does not support component * orientation is being used, then null is returned. * * @param container Container whose orientation is being queried * @return the container's orientation or null if no orientation is supported */ protected ComponentOrientation getComponentOrientation ( Container container ) { // This method is implemented to only get the class and method objects // once so as to reduce expensive reflection operations. If the reflection // fails, then component orientation is not supported. ComponentOrientation co = null; try { if ( checkForComponentOrientationSupport ) { methodGetComponentOrientation = Class.forName ( "java.awt.Container" ).getMethod ( "getComponentOrientation", new Class[ 0 ] ); checkForComponentOrientationSupport = false; } if ( methodGetComponentOrientation != null ) { co = ( ComponentOrientation ) methodGetComponentOrientation.invoke ( container, new Object[ 0 ] ); } } catch ( Exception e ) { } return co; } /** * Calculates the vertical/horizontal offset and size of a component. * * @param entry entry containing component and contraints * @param preferredSize previously calculated preferred width/height of component * @param isColumn if true, this method is being called to calculate the offset/size of a * column. if false,... of a row. * @return an array, a, of two integers such that a[0] is the offset and a[1] is the size */ protected int[] calculateSizeAndOffset ( Entry entry, int preferredSize, boolean isColumn ) { // Get references to cr properties int crOffset[] = isColumn ? this.crOffset[ C ] : this.crOffset[ R ]; int entryAlignment = isColumn ? entry.alignment[ C ] : entry.alignment[ R ]; // Determine cell set size int cellSetSize = isColumn ? crOffset[ entry.cr2[ C ] + 1 ] - crOffset[ entry.cr1[ C ] ] : crOffset[ entry.cr2[ R ] + 1 ] - crOffset[ entry.cr1[ R ] ]; // Determine the size of the component int size; if ( ( entryAlignment == FULL ) || ( cellSetSize < preferredSize ) ) { size = cellSetSize; } else { size = preferredSize; } // Since the component orientation is adjusted for in the layoutContainer // method, we can treat leading justification as left justification and // trailing justification as right justification. if ( isColumn && ( entryAlignment == LEADING ) ) { entryAlignment = LEFT; } if ( isColumn && ( entryAlignment == TRAILING ) ) { entryAlignment = RIGHT; } // Determine offset int offset; switch ( entryAlignment ) { case LEFT: // Align left/top side along left edge of cell offset = crOffset[ isColumn ? entry.cr1[ C ] : entry.cr1[ R ] ]; break; case RIGHT: // Align right/bottom side along right edge of cell offset = crOffset[ ( isColumn ? entry.cr2[ C ] : entry.cr2[ R ] ) + 1 ] - size; break; case CENTER: // Center justify component offset = crOffset[ isColumn ? entry.cr1[ C ] : entry.cr1[ R ] ] + ( ( cellSetSize - size ) >> 1 ); break; case FULL: // Align left/top side along left/top edge of cell offset = crOffset[ isColumn ? entry.cr1[ C ] : entry.cr1[ R ] ]; break; default: // This is a never should happen case, but just in case offset = 0; } // Compensate for gaps if ( isColumn ) { offset += hGap * entry.cr1[ C ]; int cumlativeGap = hGap * ( entry.cr2[ C ] - entry.cr1[ C ] ); switch ( entryAlignment ) { case RIGHT: offset += cumlativeGap; break; case CENTER: offset += cumlativeGap >> 1; break; case FULL: size += cumlativeGap; break; } } else { offset += vGap * entry.cr1[ R ]; int cumlativeGap = vGap * ( entry.cr2[ R ] - entry.cr1[ R ] ); switch ( entryAlignment ) { case BOTTOM: offset += cumlativeGap; break; case CENTER: offset += cumlativeGap >> 1; break; case FULL: size += cumlativeGap; break; } } // Package return values int value[] = { offset, size }; return value; } /** * Determines the preferred size of the container argument using this layout. The preferred size * is the smallest size that, if used for the container's size, will ensure that all components * are at least as large as their preferred size. This method cannot guarantee that all * components will be their preferred size. For example, if component A and component B are * each allocate half of the container's width and component A wants to be 10 pixels wide while * component B wants to be 100 pixels wide, they cannot both be accommodated. Since in general * components rather be larger than their preferred size instead of smaller, component B's * request will be fulfilled. The preferred size of the container would be 200 pixels. * * @param container container being served by this layout manager * @return a dimension indicating the container's preferred size */ public Dimension preferredLayoutSize ( Container container ) { return calculateLayoutSize ( container, PREFERRED ); } /** * Determines the minimum size of the container argument using this layout. The minimum size is * the smallest size that, if used for the container's size, will ensure that all components are * at least as large as their minimum size. This method cannot guarantee that all components * will be their minimum size. For example, if component A and component B are each allocate * half of the container's width and component A wants to be 10 pixels wide while component B * wants to be 100 pixels wide, they cannot both be accommodated. Since in general components * rather be larger than their minimum size instead of smaller, component B's request will be * fulfilled. The minimum size of the container would be 200 pixels. * * @param container container being served by this layout manager * @return a dimension indicating the container's minimum size */ public Dimension minimumLayoutSize ( Container container ) { return calculateLayoutSize ( container, MINIMUM ); } /** * Calculates the preferred or minimum size for the methods preferredLayoutSize and * minimumLayoutSize. * * @param container container whose size is being calculated * @param typeOfSize indicates preferred or minimum * @return a dimension indicating the container's preferred or minimum size */ protected Dimension calculateLayoutSize ( Container container, double typeOfSize ) { // Get preferred/minimum sizes Entry entryList[] = ( Entry[] ) list.toArray ( new Entry[ list.size () ] ); int numEntry = entryList.length; Dimension prefMinSize[] = new Dimension[ numEntry ]; for ( int i = 0; i < numEntry; i++ ) { prefMinSize[ i ] = ( typeOfSize == PREFERRED ) ? entryList[ i ].component.getPreferredSize () : entryList[ i ].component.getMinimumSize (); } // Calculate sizes int width = calculateLayoutSize ( container, C, typeOfSize, entryList, prefMinSize ); int height = calculateLayoutSize ( container, R, typeOfSize, entryList, prefMinSize ); // Compensate for container's insets Insets inset = container.getInsets (); width += inset.left + inset.right; height += inset.top + inset.bottom; return new Dimension ( width, height ); } /** * Calculates the preferred or minimum size for the method calculateLayoutSize(Container * container, double typeOfSize). This method is passed the preferred/minimum sizes of the * components so that the potentially expensive methods getPreferredSize()/getMinimumSize() are * not called twice for the same component. * * @param container container whose size is being calculated * @param z indicates row or column * @param typeOfSize indicates preferred or minimum * @param entryList list of Entry objects * @param prefMinSize list of preferred or minimum sizes * @return a dimension indicating the container's preferred or minimum size */ protected int calculateLayoutSize ( Container container, int z, double typeOfSize, Entry entryList[], Dimension prefMinSize[] ) { Dimension size; // Preferred/minimum size of current component int scaledSize = 0; // Preferred/minimum size of scaled components int temp; // Temporary variable used to compare sizes int counter; // Counting variable // Get number of crs int numCr = crSpec[ z ].length; // Determine percentage of space allocated to fill components. This is // one minus the sum of all scalable components. double fillSizeRatio = 1.0; int numFillSize = 0; for ( counter = 0; counter < numCr; counter++ ) { if ( ( crSpec[ z ][ counter ] > 0.0 ) && ( crSpec[ z ][ counter ] < 1.0 ) ) { fillSizeRatio -= crSpec[ z ][ counter ]; } else if ( crSpec[ z ][ counter ] == FILL ) { numFillSize++; } } // Adjust fill ratios to reflect number of fill rows/columns if ( numFillSize > 1 ) { fillSizeRatio /= numFillSize; } // Cap fill ratio bottoms to 0.0 if ( fillSizeRatio < 0.0 ) { fillSizeRatio = 0.0; } // Create array to hold actual sizes in pixels crSize[ z ] = new int[ numCr ]; // Assign absolute sizes (must be done before assignPrefMinSize) // This is done to calculate absolute cr sizes assignAbsoluteSize ( z, 0 ); // Assign preferred and minimum sizes (must be done after assignAbsoluteSize) // This is done to calculate preferred/minimum cr sizes assignPrefMinSize ( z, 0, MINIMUM ); assignPrefMinSize ( z, 0, PREFERRED ); int crPrefMin[] = new int[ numCr ]; for ( counter = 0; counter < numCr; counter++ ) { if ( ( crSpec[ z ][ counter ] == PREFERRED ) || ( crSpec[ z ][ counter ] == MINIMUM ) ) { crPrefMin[ counter ] = crSize[ z ][ counter ]; } } // Find maximum preferred/minimum size of all scaled components int numColumn = crSpec[ C ].length; int numRow = crSpec[ R ].length; int numEntry = entryList.length; for ( int entryCounter = 0; entryCounter < numEntry; entryCounter++ ) { // Get next entry Entry entry = entryList[ entryCounter ]; // Make sure entry is in valid rows and columns if ( ( entry.cr1[ C ] < 0 ) || ( entry.cr1[ C ] >= numColumn ) || ( entry.cr2[ C ] >= numColumn ) || ( entry.cr1[ R ] < 0 ) || ( entry.cr1[ R ] >= numRow ) || ( entry.cr2[ R ] >= numRow ) ) { // Skip the bad component continue; } // Get preferred/minimum size of current component size = prefMinSize[ entryCounter ]; //---------------------------------------------------------------------- // Calculate portion of component that is not absolutely sized int scalableSize = ( z == C ) ? size.width : size.height; for ( counter = entry.cr1[ z ]; counter <= entry.cr2[ z ]; counter++ ) { if ( crSpec[ z ][ counter ] >= 1.0 ) { scalableSize -= crSpec[ z ][ counter ]; } else if ( ( crSpec[ z ][ counter ] == PREFERRED ) || ( crSpec[ z ][ counter ] == MINIMUM ) ) { scalableSize -= crPrefMin[ counter ]; } } //---------------------------------------------------------------------- // Determine total percentage of scalable space that the component // occupies by adding the relative columns and the fill columns double relativeSize = 0.0; for ( counter = entry.cr1[ z ]; counter <= entry.cr2[ z ]; counter++ ) { // Cr is scaled if ( ( crSpec[ z ][ counter ] > 0.0 ) && ( crSpec[ z ][ counter ] < 1.0 ) ) // Add scaled size to relativeWidth { relativeSize += crSpec[ z ][ counter ]; } // Cr is fill else if ( ( crSpec[ z ][ counter ] == FILL ) && ( fillSizeRatio != 0.0 ) ) // Add fill size to relativeWidth { relativeSize += fillSizeRatio; } } // Determine the total scaled size as estimated by this component if ( relativeSize == 0 ) { temp = 0; } else { temp = ( int ) ( scalableSize / relativeSize + 0.5 ); } //---------------------------------------------------------------------- // If the container needs to be bigger, make it so if ( scaledSize < temp ) { scaledSize = temp; } } // totalSize is the scaledSize plus the sum of all absolute sizes and all // preferred sizes int totalSize = scaledSize; for ( counter = 0; counter < numCr; counter++ ) // Is the current cr an absolute size { if ( crSpec[ z ][ counter ] >= 1.0 ) { totalSize += ( int ) ( crSpec[ z ][ counter ] + 0.5 ); } // Is the current cr a preferred/minimum size else if ( ( crSpec[ z ][ counter ] == PREFERRED ) || ( crSpec[ z ][ counter ] == MINIMUM ) ) { // Add preferred/minimum width totalSize += crPrefMin[ counter ]; } } // Compensate for horizontal and vertical gap if ( numCr > 0 ) { totalSize += ( ( z == C ) ? hGap : vGap ) * ( numCr - 1 ); } return totalSize; } /** * Adds the specified component with the specified name to the layout. * * @param name indicates entry's position and anchor * @param component component to add */ public void addLayoutComponent ( String name, Component component ) { addLayoutComponent ( component, name ); } /** * Adds the specified component with the specified name to the layout. * * @param component component to add * @param constraint indicates entry's position and alignment */ public void addLayoutComponent ( Component component, Object constraint ) { if ( constraint instanceof String ) { // Create an entry to associate component with its constraints constraint = new TableLayoutConstraints ( ( String ) constraint ); // Add component and constraints to the list list.add ( new Entry ( component, ( TableLayoutConstraints ) constraint ) ); // Indicate that the cell sizes are not known dirty = true; } else if ( constraint instanceof TableLayoutConstraints ) { // Add component and constraints to the list list.add ( new Entry ( component, ( TableLayoutConstraints ) constraint ) ); // Indicate that the cell sizes are not known dirty = true; } else if ( constraint == null ) { throw new IllegalArgumentException ( "No constraint for the component" ); } else { throw new IllegalArgumentException ( "Cannot accept a constraint of class " + constraint.getClass () ); } } /** * Removes the specified component from the layout. * * @param component component being removed */ public void removeLayoutComponent ( Component component ) { // Remove the component ListIterator iterator = list.listIterator ( 0 ); while ( iterator.hasNext () ) { Entry entry = ( Entry ) iterator.next (); if ( entry.component == component ) { iterator.remove (); } } // Indicate that the cell sizes are not known since dirty = true; } /** * Returns the maximum dimensions for this layout given the components in the specified target * container. * * @param target the component which needs to be laid out * @return unconditionally, a Dimension of Integer.MAX_VALUE by Integer.MAX_VALUE since * TableLayout does not limit the maximum size of a container */ public Dimension maximumLayoutSize ( Container target ) { return new Dimension ( Integer.MAX_VALUE, Integer.MAX_VALUE ); } /** * Returns the alignment along the x axis. This specifies how the component would like to be * aligned relative to other components. The value should be a number between 0 and 1 where 0 * represents alignment along the origin, 1 is aligned the furthest away from the origin, 0.5 is * centered, etc. * * @return unconditionally, 0.5 */ public float getLayoutAlignmentX ( Container parent ) { return 0.5f; } /** * Returns the alignment along the y axis. This specifies how the component would like to be * aligned relative to other components. The value should be a number between 0 and 1 where 0 * represents alignment along the origin, 1 is aligned the furthest away from the origin, 0.5 is * centered, etc. * * @return unconditionally, 0.5 */ public float getLayoutAlignmentY ( Container parent ) { return 0.5f; } /** * Invalidates the layout, indicating that if the layout manager has cached information it * should be discarded. */ public void invalidateLayout ( Container target ) { dirty = true; } /** * The following inner class is used to bind components to their constraints. */ public static class Entry implements Cloneable { /** * Component bound by the constraints */ public Component component; /** * Cell in which the upper-left corner of the component lies */ public int cr1[]; /** * Cell in which the lower-right corner of the component lies */ public int cr2[]; /** * Horizontal and vertical alignment */ public int alignment[]; /** * Constructs an Entry that binds a component to a set of constraints. * * @param component component being bound * @param constraint constraints being applied */ public Entry ( Component component, TableLayoutConstraints constraint ) { int cr1[] = { constraint.col1, constraint.row1 }; int cr2[] = { constraint.col2, constraint.row2 }; int alignment[] = { constraint.hAlign, constraint.vAlign }; this.cr1 = cr1; this.cr2 = cr2; this.alignment = alignment; this.component = component; } /** * Copies this Entry. */ public Object copy () throws CloneNotSupportedException { return clone (); } /** * Gets the string representation of this Entry. * * @return a string in the form "(col1, row1, col2, row2, vAlign, hAlign) component" */ public String toString () { TableLayoutConstraints c = new TableLayoutConstraints ( cr1[ C ], cr1[ R ], cr2[ C ], cr2[ R ], alignment[ C ], alignment[ R ] ); return "(" + c + ") " + component; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy