All Downloads are FREE. Search and download functionalities are using the official Maven repository.

de.uniks.networkparser.bytes.qr.GenericGF Maven / Gradle / Ivy

/*
 * Copyright 2008 ZXing authors
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *		http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package de.uniks.networkparser.bytes.qr;

/**
 * 

* This class contains utility methods for performing mathematical operations * over the Galois Fields. Operations use a given primitive polynomial in * calculations. *

* *

* Throughout this package, elements of the GF are represented as an {@code int} * for convenience and speed (but at the cost of memory). *

* * @author Sean Owen * @author David Olivier */ public final class GenericGF { public static final GenericGF AZTEC_DATA_12 = new GenericGF(0x1069, 4096, 1); // x^12 + x^6 + x^5 + x^3 + 1 public static final GenericGF AZTEC_DATA_10 = new GenericGF(0x409, 1024, 1); // x^10 + x^3 + 1 public static final GenericGF AZTEC_DATA_6 = new GenericGF(0x43, 64, 1); // x^6 + x + 1 public static final GenericGF AZTEC_PARAM = new GenericGF(0x13, 16, 1); // x^4 + x + 1 public static final GenericGF QR_CODE_FIELD_256 = new GenericGF(0x011D, 256, 0);// x^8 + x^4 + x^3 + x^2 + 1 public static final GenericGF DATA_MATRIX_FIELD_256 = new GenericGF(0x012D, 256, 1); // x^8 + x^5 + x^3 + x^2 + 1 public static final GenericGF AZTEC_DATA_8 = DATA_MATRIX_FIELD_256; public static final GenericGF MAXICODE_FIELD_64 = AZTEC_DATA_6; private final int[] expTable; private final int[] logTable; private final GenericGFPoly zero; private final GenericGFPoly one; private final int size; private final int primitive; private final int generatorBase; /** * Create a representation of GF(size) using the given primitive polynomial. * * @param primitive * irreducible polynomial whose coefficients are represented by * the bits of an int, where the least-significant bit represents the constant coefficient * @param size the size of the field * @param b * the factor b in the generator polynomial can be 0- or 1-based * (g(x) = (x+a^b)(x+a^(b+1))...(x+a^(b+2t-1))). In most cases it * should be 1, but for QR code it is 0. */ public GenericGF(int primitive, int size, int b) { this.primitive = primitive; this.size = size; this.generatorBase = b; expTable = new int[size]; logTable = new int[size]; int x = 1; for (int i = 0; i < size; i++) { expTable[i] = x; x *= 2; // we're assuming the generator alpha is 2 if (x >= size) { x ^= primitive; x &= size - 1; } } for (int i = 0; i < size - 1; i++) { logTable[expTable[i]] = i; } // logTable[0] == 0 but this should never be used zero = new GenericGFPoly(this, new int[] { 0 }); one = new GenericGFPoly(this, new int[] { 1 }); } GenericGFPoly getZero() { return zero; } GenericGFPoly getOne() { return one; } /** * @return the monomial representing coefficient * x^degree */ GenericGFPoly buildMonomial(int degree, int coefficient) { if (degree < 0) { throw new IllegalArgumentException(); } if (coefficient == 0) { return zero; } int[] coefficients = new int[degree + 1]; coefficients[0] = coefficient; return new GenericGFPoly(this, coefficients); } /** * Implements both addition and subtraction -- they are the same in * GF(size). * @param a integer * @param b integer * @return sum/difference of a and b */ static int addOrSubtract(int a, int b) { return a ^ b; } /** * @return 2 to the power of a in GF(size) */ int exp(int a) { return expTable[a]; } /** * @return base 2 log of a in GF(size) */ int log(int a) { if (a == 0) { throw new IllegalArgumentException(); } return logTable[a]; } /** * @return multiplicative inverse of a */ int inverse(int a) { if (a == 0) { throw new ArithmeticException(); } return expTable[size - logTable[a] - 1]; } /** * @return product of a and b in GF(size) */ int multiply(int a, int b) { if (a == 0 || b == 0) { return 0; } return expTable[(logTable[a] + logTable[b]) % (size - 1)]; } public int getSize() { return size; } public int getGeneratorBase() { return generatorBase; } @Override public String toString() { return "GF(0x" + Integer.toHexString(primitive) + ',' + size + ')'; } }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy