de.uniks.networkparser.bytes.qr.GenericGF Maven / Gradle / Ivy
/*
* Copyright 2008 ZXing authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package de.uniks.networkparser.bytes.qr;
/**
*
* This class contains utility methods for performing mathematical operations
* over the Galois Fields. Operations use a given primitive polynomial in
* calculations.
*
*
*
* Throughout this package, elements of the GF are represented as an {@code int}
* for convenience and speed (but at the cost of memory).
*
*
* @author Sean Owen
* @author David Olivier
*/
public final class GenericGF {
public static final GenericGF AZTEC_DATA_12 = new GenericGF(0x1069, 4096, 1); // x^12 + x^6 + x^5 + x^3 + 1
public static final GenericGF AZTEC_DATA_10 = new GenericGF(0x409, 1024, 1); // x^10 + x^3 + 1
public static final GenericGF AZTEC_DATA_6 = new GenericGF(0x43, 64, 1); // x^6 + x + 1
public static final GenericGF AZTEC_PARAM = new GenericGF(0x13, 16, 1); // x^4 + x + 1
public static final GenericGF QR_CODE_FIELD_256 = new GenericGF(0x011D, 256, 0);// x^8 + x^4 + x^3 + x^2 + 1
public static final GenericGF DATA_MATRIX_FIELD_256 = new GenericGF(0x012D, 256, 1); // x^8 + x^5 + x^3 + x^2 + 1
public static final GenericGF AZTEC_DATA_8 = DATA_MATRIX_FIELD_256;
public static final GenericGF MAXICODE_FIELD_64 = AZTEC_DATA_6;
private final int[] expTable;
private final int[] logTable;
private final GenericGFPoly zero;
private final GenericGFPoly one;
private final int size;
private final int primitive;
private final int generatorBase;
/**
* Create a representation of GF(size) using the given primitive polynomial.
*
* @param primitive
* irreducible polynomial whose coefficients are represented by
* the bits of an int, where the least-significant bit represents the constant coefficient
* @param size the size of the field
* @param b
* the factor b in the generator polynomial can be 0- or 1-based
* (g(x) = (x+a^b)(x+a^(b+1))...(x+a^(b+2t-1))). In most cases it
* should be 1, but for QR code it is 0.
*/
public GenericGF(int primitive, int size, int b) {
this.primitive = primitive;
this.size = size;
this.generatorBase = b;
expTable = new int[size];
logTable = new int[size];
int x = 1;
for (int i = 0; i < size; i++) {
expTable[i] = x;
x *= 2; // we're assuming the generator alpha is 2
if (x >= size) {
x ^= primitive;
x &= size - 1;
}
}
for (int i = 0; i < size - 1; i++) {
logTable[expTable[i]] = i;
}
// logTable[0] == 0 but this should never be used
zero = new GenericGFPoly(this, new int[] { 0 });
one = new GenericGFPoly(this, new int[] { 1 });
}
GenericGFPoly getZero() {
return zero;
}
GenericGFPoly getOne() {
return one;
}
/**
* @return the monomial representing coefficient * x^degree
*/
GenericGFPoly buildMonomial(int degree, int coefficient) {
if (degree < 0) {
throw new IllegalArgumentException();
}
if (coefficient == 0) {
return zero;
}
int[] coefficients = new int[degree + 1];
coefficients[0] = coefficient;
return new GenericGFPoly(this, coefficients);
}
/**
* Implements both addition and subtraction -- they are the same in
* GF(size).
* @param a integer
* @param b integer
* @return sum/difference of a and b
*/
static int addOrSubtract(int a, int b) {
return a ^ b;
}
/**
* @return 2 to the power of a in GF(size)
*/
int exp(int a) {
return expTable[a];
}
/**
* @return base 2 log of a in GF(size)
*/
int log(int a) {
if (a == 0) {
throw new IllegalArgumentException();
}
return logTable[a];
}
/**
* @return multiplicative inverse of a
*/
int inverse(int a) {
if (a == 0) {
throw new ArithmeticException();
}
return expTable[size - logTable[a] - 1];
}
/**
* @return product of a and b in GF(size)
*/
int multiply(int a, int b) {
if (a == 0 || b == 0) {
return 0;
}
return expTable[(logTable[a] + logTable[b]) % (size - 1)];
}
public int getSize() {
return size;
}
public int getGeneratorBase() {
return generatorBase;
}
@Override
public String toString() {
return "GF(0x" + Integer.toHexString(primitive) + ',' + size + ')';
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy