All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.gradle.performance.measure.DataSeries Maven / Gradle / Ivy

There is a newer version: 8.11.1
Show newest version
/*
 * Copyright 2014 the original author or authors.
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.gradle.performance.measure;

import java.math.BigDecimal;
import java.util.ArrayList;

/**
 * A collection of measurements of some given units.
 */
public class DataSeries extends ArrayList> {
    private final Amount average;
    private final Amount max;
    private final Amount min;
    // https://en.wikipedia.org/wiki/Standard_error
    private final Amount standardError;
    // https://en.wikipedia.org/wiki/Standard_error#Standard_error_of_the_mean
    private final Amount standardErrorOfMean;

    public DataSeries(Iterable> values) {
        for (Amount value : values) {
            if (value != null) {
                add(value);
            }
        }

        if (isEmpty()) {
            average = null;
            max = null;
            min = null;
            standardError = null;
            standardErrorOfMean = null;
            return;
        }

        Amount total = get(0);
        Amount min = get(0);
        Amount max = get(0);
        for (int i = 1; i < size(); i++) {
            Amount amount = get(i);
            total = total.plus(amount);
            min = min.compareTo(amount) <= 0 ? min : amount;
            max = max.compareTo(amount) >= 0 ? max : amount;
        }
        average = total.div(size());
        this.min = min;
        this.max = max;

        BigDecimal sumSquares = BigDecimal.ZERO;
        Units baseUnits = average.getUnits().getBaseUnits();
        BigDecimal averageValue = average.toUnits(baseUnits).getValue();
        for (int i = 0; i < size(); i++) {
            Amount amount = get(i);
            BigDecimal diff = amount.toUnits(baseUnits).getValue();
            diff = diff.subtract(averageValue);
            diff = diff.multiply(diff);
            sumSquares = sumSquares.add(diff);
        }
        // This isn't quite right, as we may lose precision when converting to a double
        BigDecimal result = BigDecimal.valueOf(Math.sqrt(sumSquares.divide(BigDecimal.valueOf(size()), BigDecimal.ROUND_HALF_UP).doubleValue())).setScale(2, BigDecimal.ROUND_HALF_UP);

        standardError = Amount.valueOf(result, baseUnits);
        standardErrorOfMean = standardError.div(BigDecimal.valueOf(Math.sqrt(size())));
    }

    public Amount getAverage() {
        return average;
    }

    public Amount getMin() {
        return min;
    }

    public Amount getMax() {
        return max;
    }

    public Amount getStandardError() {
        return standardError;
    }

    public Amount getStandardErrorOfMean() {
        return standardErrorOfMean;
    }
}




© 2015 - 2025 Weber Informatics LLC | Privacy Policy