com.google.common.collect.Lists Maven / Gradle / Ivy
Show all versions of guava Show documentation
/*
* Copyright (C) 2007 The Guava Authors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package com.google.common.collect;
import static com.google.common.base.Preconditions.checkArgument;
import static com.google.common.base.Preconditions.checkElementIndex;
import static com.google.common.base.Preconditions.checkNotNull;
import static com.google.common.base.Preconditions.checkPositionIndex;
import static com.google.common.base.Preconditions.checkPositionIndexes;
import static com.google.common.base.Preconditions.checkState;
import static com.google.common.collect.CollectPreconditions.checkNonnegative;
import static com.google.common.collect.CollectPreconditions.checkRemove;
import com.google.common.annotations.GwtCompatible;
import com.google.common.annotations.GwtIncompatible;
import com.google.common.annotations.J2ktIncompatible;
import com.google.common.annotations.VisibleForTesting;
import com.google.common.base.Function;
import com.google.common.base.Objects;
import com.google.common.math.IntMath;
import com.google.common.primitives.Ints;
import java.io.Serializable;
import java.math.RoundingMode;
import java.util.AbstractList;
import java.util.AbstractSequentialList;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.Collection;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.List;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import java.util.RandomAccess;
import java.util.concurrent.CopyOnWriteArrayList;
import java.util.function.Predicate;
import javax.annotation.CheckForNull;
import org.checkerframework.checker.nullness.qual.Nullable;
/**
* Static utility methods pertaining to {@link List} instances. Also see this class's counterparts
* {@link Sets}, {@link Maps} and {@link Queues}.
*
* See the Guava User Guide article on {@code Lists}.
*
* @author Kevin Bourrillion
* @author Mike Bostock
* @author Louis Wasserman
* @since 2.0
*/
@GwtCompatible(emulated = true)
@ElementTypesAreNonnullByDefault
public final class Lists {
private Lists() {}
// ArrayList
/**
* Creates a mutable, empty {@code ArrayList} instance (for Java 6 and earlier).
*
*
Note: if mutability is not required, use {@link ImmutableList#of()} instead.
*
*
Note: this method is now unnecessary and should be treated as deprecated. Instead,
* use the {@code ArrayList} {@linkplain ArrayList#ArrayList() constructor} directly, taking
* advantage of "diamond" syntax.
*/
@GwtCompatible(serializable = true)
public static ArrayList newArrayList() {
return new ArrayList<>();
}
/**
* Creates a mutable {@code ArrayList} instance containing the given elements.
*
* Note: essentially the only reason to use this method is when you will need to add or
* remove elements later. Otherwise, for non-null elements use {@link ImmutableList#of()} (for
* varargs) or {@link ImmutableList#copyOf(Object[])} (for an array) instead. If any elements
* might be null, or you need support for {@link List#set(int, Object)}, use {@link
* Arrays#asList}.
*
*
Note that even when you do need the ability to add or remove, this method provides only a
* tiny bit of syntactic sugar for {@code newArrayList(}{@link Arrays#asList asList}{@code
* (...))}, or for creating an empty list then calling {@link Collections#addAll}. This method is
* not actually very useful and will likely be deprecated in the future.
*/
@SafeVarargs
@GwtCompatible(serializable = true)
@SuppressWarnings("nullness") // TODO: b/316358623 - Remove after checker fix.
public static ArrayList newArrayList(E... elements) {
checkNotNull(elements); // for GWT
// Avoid integer overflow when a large array is passed in
int capacity = computeArrayListCapacity(elements.length);
ArrayList list = new ArrayList<>(capacity);
Collections.addAll(list, elements);
return list;
}
/**
* Creates a mutable {@code ArrayList} instance containing the given elements; a very thin
* shortcut for creating an empty list then calling {@link Iterables#addAll}.
*
* Note: if mutability is not required and the elements are non-null, use {@link
* ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
* FluentIterable} and call {@code elements.toList()}.)
*
*
Note: if {@code elements} is a {@link Collection}, you don't need this method. Use
* the {@code ArrayList} {@linkplain ArrayList#ArrayList(Collection) constructor} directly, taking
* advantage of "diamond" syntax.
*/
@GwtCompatible(serializable = true)
public static ArrayList newArrayList(
Iterable extends E> elements) {
checkNotNull(elements); // for GWT
// Let ArrayList's sizing logic work, if possible
return (elements instanceof Collection)
? new ArrayList<>((Collection extends E>) elements)
: newArrayList(elements.iterator());
}
/**
* Creates a mutable {@code ArrayList} instance containing the given elements; a very thin
* shortcut for creating an empty list and then calling {@link Iterators#addAll}.
*
* Note: if mutability is not required and the elements are non-null, use {@link
* ImmutableList#copyOf(Iterator)} instead.
*/
@GwtCompatible(serializable = true)
public static ArrayList newArrayList(
Iterator extends E> elements) {
ArrayList list = newArrayList();
Iterators.addAll(list, elements);
return list;
}
@VisibleForTesting
static int computeArrayListCapacity(int arraySize) {
checkNonnegative(arraySize, "arraySize");
// TODO(kevinb): Figure out the right behavior, and document it
return Ints.saturatedCast(5L + arraySize + (arraySize / 10));
}
/**
* Creates an {@code ArrayList} instance backed by an array with the specified initial size;
* simply delegates to {@link ArrayList#ArrayList(int)}.
*
* Note: this method is now unnecessary and should be treated as deprecated. Instead,
* use {@code new }{@link ArrayList#ArrayList(int) ArrayList}{@code <>(int)} directly, taking
* advantage of "diamond" syntax. (Unlike here, there is no risk
* of overload ambiguity, since the {@code ArrayList} constructors very wisely did not accept
* varargs.)
*
* @param initialArraySize the exact size of the initial backing array for the returned array list
* ({@code ArrayList} documentation calls this value the "capacity")
* @return a new, empty {@code ArrayList} which is guaranteed not to resize itself unless its size
* reaches {@code initialArraySize + 1}
* @throws IllegalArgumentException if {@code initialArraySize} is negative
*/
@GwtCompatible(serializable = true)
public static ArrayList newArrayListWithCapacity(
int initialArraySize) {
checkNonnegative(initialArraySize, "initialArraySize"); // for GWT.
return new ArrayList<>(initialArraySize);
}
/**
* Creates an {@code ArrayList} instance to hold {@code estimatedSize} elements, plus an
* unspecified amount of padding; you almost certainly mean to call {@link
* #newArrayListWithCapacity} (see that method for further advice on usage).
*
* Note: This method will soon be deprecated. Even in the rare case that you do want
* some amount of padding, it's best if you choose your desired amount explicitly.
*
* @param estimatedSize an estimate of the eventual {@link List#size()} of the new list
* @return a new, empty {@code ArrayList}, sized appropriately to hold the estimated number of
* elements
* @throws IllegalArgumentException if {@code estimatedSize} is negative
*/
@GwtCompatible(serializable = true)
public static ArrayList newArrayListWithExpectedSize(
int estimatedSize) {
return new ArrayList<>(computeArrayListCapacity(estimatedSize));
}
// LinkedList
/**
* Creates a mutable, empty {@code LinkedList} instance (for Java 6 and earlier).
*
* Note: if you won't be adding any elements to the list, use {@link ImmutableList#of()}
* instead.
*
*
Performance note: {@link ArrayList} and {@link java.util.ArrayDeque} consistently
* outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
* spent a lot of time benchmarking your specific needs, use one of those instead.
*
*
Note: this method is now unnecessary and should be treated as deprecated. Instead,
* use the {@code LinkedList} {@linkplain LinkedList#LinkedList() constructor} directly, taking
* advantage of "diamond" syntax.
*/
@GwtCompatible(serializable = true)
public static LinkedList newLinkedList() {
return new LinkedList<>();
}
/**
* Creates a mutable {@code LinkedList} instance containing the given elements; a very thin
* shortcut for creating an empty list then calling {@link Iterables#addAll}.
*
* Note: if mutability is not required and the elements are non-null, use {@link
* ImmutableList#copyOf(Iterable)} instead. (Or, change {@code elements} to be a {@link
* FluentIterable} and call {@code elements.toList()}.)
*
*
Performance note: {@link ArrayList} and {@link java.util.ArrayDeque} consistently
* outperform {@code LinkedList} except in certain rare and specific situations. Unless you have
* spent a lot of time benchmarking your specific needs, use one of those instead.
*
*
Note: if {@code elements} is a {@link Collection}, you don't need this method. Use
* the {@code LinkedList} {@linkplain LinkedList#LinkedList(Collection) constructor} directly,
* taking advantage of "diamond" syntax.
*/
@GwtCompatible(serializable = true)
public static LinkedList newLinkedList(
Iterable extends E> elements) {
LinkedList list = newLinkedList();
Iterables.addAll(list, elements);
return list;
}
/**
* Creates an empty {@code CopyOnWriteArrayList} instance.
*
* Note: if you need an immutable empty {@link List}, use {@link Collections#emptyList}
* instead.
*
* @return a new, empty {@code CopyOnWriteArrayList}
* @since 12.0
*/
@J2ktIncompatible
@GwtIncompatible // CopyOnWriteArrayList
public static CopyOnWriteArrayList newCopyOnWriteArrayList() {
return new CopyOnWriteArrayList<>();
}
/**
* Creates a {@code CopyOnWriteArrayList} instance containing the given elements.
*
* @param elements the elements that the list should contain, in order
* @return a new {@code CopyOnWriteArrayList} containing those elements
* @since 12.0
*/
@J2ktIncompatible
@GwtIncompatible // CopyOnWriteArrayList
public static CopyOnWriteArrayList newCopyOnWriteArrayList(
Iterable extends E> elements) {
// We copy elements to an ArrayList first, rather than incurring the
// quadratic cost of adding them to the COWAL directly.
Collection extends E> elementsCollection =
(elements instanceof Collection)
? (Collection extends E>) elements
: newArrayList(elements);
return new CopyOnWriteArrayList<>(elementsCollection);
}
/**
* Returns an unmodifiable list containing the specified first element and backed by the specified
* array of additional elements. Changes to the {@code rest} array will be reflected in the
* returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
*
* This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
* Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum argument count.
*
*
The returned list is serializable and implements {@link RandomAccess}.
*
* @param first the first element
* @param rest an array of additional elements, possibly empty
* @return an unmodifiable list containing the specified elements
*/
public static List asList(@ParametricNullness E first, E[] rest) {
return new OnePlusArrayList<>(first, rest);
}
/**
* Returns an unmodifiable list containing the specified first and second element, and backed by
* the specified array of additional elements. Changes to the {@code rest} array will be reflected
* in the returned list. Unlike {@link Arrays#asList}, the returned list is unmodifiable.
*
* This is useful when a varargs method needs to use a signature such as {@code (Foo firstFoo,
* Foo secondFoo, Foo... moreFoos)}, in order to avoid overload ambiguity or to enforce a minimum
* argument count.
*
*
The returned list is serializable and implements {@link RandomAccess}.
*
* @param first the first element
* @param second the second element
* @param rest an array of additional elements, possibly empty
* @return an unmodifiable list containing the specified elements
*/
public static List asList(
@ParametricNullness E first, @ParametricNullness E second, E[] rest) {
return new TwoPlusArrayList<>(first, second, rest);
}
/** @see Lists#asList(Object, Object[]) */
private static class OnePlusArrayList extends AbstractList
implements Serializable, RandomAccess {
@ParametricNullness final E first;
final E[] rest;
OnePlusArrayList(@ParametricNullness E first, E[] rest) {
this.first = first;
this.rest = checkNotNull(rest);
}
@Override
public int size() {
return IntMath.saturatedAdd(rest.length, 1);
}
@Override
@ParametricNullness
public E get(int index) {
// check explicitly so the IOOBE will have the right message
checkElementIndex(index, size());
return (index == 0) ? first : rest[index - 1];
}
@J2ktIncompatible private static final long serialVersionUID = 0;
}
/** @see Lists#asList(Object, Object, Object[]) */
private static class TwoPlusArrayList extends AbstractList
implements Serializable, RandomAccess {
@ParametricNullness final E first;
@ParametricNullness final E second;
final E[] rest;
TwoPlusArrayList(@ParametricNullness E first, @ParametricNullness E second, E[] rest) {
this.first = first;
this.second = second;
this.rest = checkNotNull(rest);
}
@Override
public int size() {
return IntMath.saturatedAdd(rest.length, 2);
}
@Override
@ParametricNullness
public E get(int index) {
switch (index) {
case 0:
return first;
case 1:
return second;
default:
// check explicitly so the IOOBE will have the right message
checkElementIndex(index, size());
return rest[index - 2];
}
}
@J2ktIncompatible private static final long serialVersionUID = 0;
}
/**
* Returns every possible list that can be formed by choosing one element from each of the given
* lists in order; the "n-ary Cartesian
* product" of the lists. For example:
*
* {@code
* Lists.cartesianProduct(ImmutableList.of(
* ImmutableList.of(1, 2),
* ImmutableList.of("A", "B", "C")))
* }
*
* returns a list containing six lists in the following order:
*
*
* - {@code ImmutableList.of(1, "A")}
*
- {@code ImmutableList.of(1, "B")}
*
- {@code ImmutableList.of(1, "C")}
*
- {@code ImmutableList.of(2, "A")}
*
- {@code ImmutableList.of(2, "B")}
*
- {@code ImmutableList.of(2, "C")}
*
*
* The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
* products that you would get from nesting for loops:
*
*
{@code
* for (B b0 : lists.get(0)) {
* for (B b1 : lists.get(1)) {
* ...
* ImmutableList tuple = ImmutableList.of(b0, b1, ...);
* // operate on tuple
* }
* }
* }
*
* Note that if any input list is empty, the Cartesian product will also be empty. If no lists
* at all are provided (an empty list), the resulting Cartesian product has one element, an empty
* list (counter-intuitive, but mathematically consistent).
*
*
Performance notes: while the cartesian product of lists of size {@code m, n, p} is a
* list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
* cartesian product is constructed, the input lists are merely copied. Only as the resulting list
* is iterated are the individual lists created, and these are not retained after iteration.
*
* @param lists the lists to choose elements from, in the order that the elements chosen from
* those lists should appear in the resulting lists
* @param any common base class shared by all axes (often just {@link Object})
* @return the Cartesian product, as an immutable list containing immutable lists
* @throws IllegalArgumentException if the size of the cartesian product would be greater than
* {@link Integer#MAX_VALUE}
* @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
* a provided list is null
* @since 19.0
*/
public static List> cartesianProduct(List extends List extends B>> lists) {
return CartesianList.create(lists);
}
/**
* Returns every possible list that can be formed by choosing one element from each of the given
* lists in order; the "n-ary Cartesian
* product" of the lists. For example:
*
* {@code
* Lists.cartesianProduct(ImmutableList.of(
* ImmutableList.of(1, 2),
* ImmutableList.of("A", "B", "C")))
* }
*
* returns a list containing six lists in the following order:
*
*
* - {@code ImmutableList.of(1, "A")}
*
- {@code ImmutableList.of(1, "B")}
*
- {@code ImmutableList.of(1, "C")}
*
- {@code ImmutableList.of(2, "A")}
*
- {@code ImmutableList.of(2, "B")}
*
- {@code ImmutableList.of(2, "C")}
*
*
* The result is guaranteed to be in the "traditional", lexicographical order for Cartesian
* products that you would get from nesting for loops:
*
*
{@code
* for (B b0 : lists.get(0)) {
* for (B b1 : lists.get(1)) {
* ...
* ImmutableList tuple = ImmutableList.of(b0, b1, ...);
* // operate on tuple
* }
* }
* }
*
* Note that if any input list is empty, the Cartesian product will also be empty. If no lists
* at all are provided (an empty list), the resulting Cartesian product has one element, an empty
* list (counter-intuitive, but mathematically consistent).
*
*
Performance notes: while the cartesian product of lists of size {@code m, n, p} is a
* list of size {@code m x n x p}, its actual memory consumption is much smaller. When the
* cartesian product is constructed, the input lists are merely copied. Only as the resulting list
* is iterated are the individual lists created, and these are not retained after iteration.
*
* @param lists the lists to choose elements from, in the order that the elements chosen from
* those lists should appear in the resulting lists
* @param any common base class shared by all axes (often just {@link Object})
* @return the Cartesian product, as an immutable list containing immutable lists
* @throws IllegalArgumentException if the size of the cartesian product would be greater than
* {@link Integer#MAX_VALUE}
* @throws NullPointerException if {@code lists}, any one of the {@code lists}, or any element of
* a provided list is null
* @since 19.0
*/
@SafeVarargs
public static List> cartesianProduct(List extends B>... lists) {
return cartesianProduct(Arrays.asList(lists));
}
/**
* Returns a list that applies {@code function} to each element of {@code fromList}. The returned
* list is a transformed view of {@code fromList}; changes to {@code fromList} will be reflected
* in the returned list and vice versa.
*
* Since functions are not reversible, the transform is one-way and new items cannot be stored
* in the returned list. The {@code add}, {@code addAll} and {@code set} methods are unsupported
* in the returned list.
*
*
The function is applied lazily, invoked when needed. This is necessary for the returned list
* to be a view, but it means that the function will be applied many times for bulk operations
* like {@link List#contains} and {@link List#hashCode}. For this to perform well, {@code
* function} should be fast. To avoid lazy evaluation when the returned list doesn't need to be a
* view, copy the returned list into a new list of your choosing.
*
*
If {@code fromList} implements {@link RandomAccess}, so will the returned list. The returned
* list is threadsafe if the supplied list and function are.
*
*
If only a {@code Collection} or {@code Iterable} input is available, use {@link
* Collections2#transform} or {@link Iterables#transform}.
*
*
Note: serializing the returned list is implemented by serializing {@code fromList},
* its contents, and {@code function} -- not by serializing the transformed values. This
* can lead to surprising behavior, so serializing the returned list is not recommended.
* Instead, copy the list using {@link ImmutableList#copyOf(Collection)} (for example), then
* serialize the copy. Other methods similar to this do not implement serialization at all for
* this reason.
*
*
Java 8+ users: many use cases for this method are better addressed by {@link
* java.util.stream.Stream#map}. This method is not being deprecated, but we gently encourage you
* to migrate to streams.
*/
public static List transform(
List fromList, Function super F, ? extends T> function) {
return (fromList instanceof RandomAccess)
? new TransformingRandomAccessList<>(fromList, function)
: new TransformingSequentialList<>(fromList, function);
}
/**
* Implementation of a sequential transforming list.
*
* @see Lists#transform
*/
private static class TransformingSequentialList<
F extends @Nullable Object, T extends @Nullable Object>
extends AbstractSequentialList implements Serializable {
final List fromList;
final Function super F, ? extends T> function;
TransformingSequentialList(List fromList, Function super F, ? extends T> function) {
this.fromList = checkNotNull(fromList);
this.function = checkNotNull(function);
}
/**
* The default implementation inherited is based on iteration and removal of each element which
* can be overkill. That's why we forward this call directly to the backing list.
*/
@Override
protected void removeRange(int fromIndex, int toIndex) {
fromList.subList(fromIndex, toIndex).clear();
}
@Override
public int size() {
return fromList.size();
}
@Override
public boolean isEmpty() {
return fromList.isEmpty();
}
@Override
public ListIterator listIterator(final int index) {
return new TransformedListIterator(fromList.listIterator(index)) {
@Override
@ParametricNullness
T transform(@ParametricNullness F from) {
return function.apply(from);
}
};
}
@Override
public boolean removeIf(Predicate super T> filter) {
checkNotNull(filter);
return fromList.removeIf(element -> filter.test(function.apply(element)));
}
private static final long serialVersionUID = 0;
}
/**
* Implementation of a transforming random access list. We try to make as many of these methods
* pass-through to the source list as possible so that the performance characteristics of the
* source list and transformed list are similar.
*
* @see Lists#transform
*/
private static class TransformingRandomAccessList<
F extends @Nullable Object, T extends @Nullable Object>
extends AbstractList implements RandomAccess, Serializable {
final List fromList;
final Function super F, ? extends T> function;
TransformingRandomAccessList(List fromList, Function super F, ? extends T> function) {
this.fromList = checkNotNull(fromList);
this.function = checkNotNull(function);
}
/**
* The default implementation inherited is based on iteration and removal of each element which
* can be overkill. That's why we forward this call directly to the backing list.
*/
@Override
protected void removeRange(int fromIndex, int toIndex) {
fromList.subList(fromIndex, toIndex).clear();
}
@Override
@ParametricNullness
public T get(int index) {
return function.apply(fromList.get(index));
}
@Override
public Iterator iterator() {
return listIterator();
}
@Override
public ListIterator listIterator(int index) {
return new TransformedListIterator(fromList.listIterator(index)) {
@Override
T transform(F from) {
return function.apply(from);
}
};
}
@Override
public boolean isEmpty() {
return fromList.isEmpty();
}
@Override
public boolean removeIf(Predicate super T> filter) {
checkNotNull(filter);
return fromList.removeIf(element -> filter.test(function.apply(element)));
}
@Override
@ParametricNullness
public T remove(int index) {
return function.apply(fromList.remove(index));
}
@Override
public int size() {
return fromList.size();
}
private static final long serialVersionUID = 0;
}
/**
* Returns consecutive {@linkplain List#subList(int, int) sublists} of a list, each of the same
* size (the final list may be smaller). For example, partitioning a list containing {@code [a, b,
* c, d, e]} with a partition size of 3 yields {@code [[a, b, c], [d, e]]} -- an outer list
* containing two inner lists of three and two elements, all in the original order.
*
* The outer list is unmodifiable, but reflects the latest state of the source list. The inner
* lists are sublist views of the original list, produced on demand using {@link List#subList(int,
* int)}, and are subject to all the usual caveats about modification as explained in that API.
*
* @param list the list to return consecutive sublists of
* @param size the desired size of each sublist (the last may be smaller)
* @return a list of consecutive sublists
* @throws IllegalArgumentException if {@code partitionSize} is nonpositive
*/
public static List> partition(List list, int size) {
checkNotNull(list);
checkArgument(size > 0);
return (list instanceof RandomAccess)
? new RandomAccessPartition<>(list, size)
: new Partition<>(list, size);
}
private static class Partition extends AbstractList> {
final List list;
final int size;
Partition(List list, int size) {
this.list = list;
this.size = size;
}
@Override
public List get(int index) {
checkElementIndex(index, size());
int start = index * size;
int end = Math.min(start + size, list.size());
return list.subList(start, end);
}
@Override
public int size() {
return IntMath.divide(list.size(), size, RoundingMode.CEILING);
}
@Override
public boolean isEmpty() {
return list.isEmpty();
}
}
private static class RandomAccessPartition extends Partition
implements RandomAccess {
RandomAccessPartition(List list, int size) {
super(list, size);
}
}
/**
* Returns a view of the specified string as an immutable list of {@code Character} values.
*
* @since 7.0
*/
public static ImmutableList charactersOf(String string) {
return new StringAsImmutableList(checkNotNull(string));
}
/**
* Returns a view of the specified {@code CharSequence} as a {@code List}, viewing
* {@code sequence} as a sequence of Unicode code units. The view does not support any
* modification operations, but reflects any changes to the underlying character sequence.
*
* @param sequence the character sequence to view as a {@code List} of characters
* @return an {@code List} view of the character sequence
* @since 7.0
*/
public static List charactersOf(CharSequence sequence) {
return new CharSequenceAsList(checkNotNull(sequence));
}
@SuppressWarnings("serial") // serialized using ImmutableList serialization
private static final class StringAsImmutableList extends ImmutableList {
private final String string;
StringAsImmutableList(String string) {
this.string = string;
}
@Override
public int indexOf(@CheckForNull Object object) {
return (object instanceof Character) ? string.indexOf((Character) object) : -1;
}
@Override
public int lastIndexOf(@CheckForNull Object object) {
return (object instanceof Character) ? string.lastIndexOf((Character) object) : -1;
}
@Override
public ImmutableList subList(int fromIndex, int toIndex) {
checkPositionIndexes(fromIndex, toIndex, size()); // for GWT
return charactersOf(string.substring(fromIndex, toIndex));
}
@Override
boolean isPartialView() {
return false;
}
@Override
public Character get(int index) {
checkElementIndex(index, size()); // for GWT
return string.charAt(index);
}
@Override
public int size() {
return string.length();
}
// redeclare to help optimizers with b/310253115
@SuppressWarnings("RedundantOverride")
@Override
@J2ktIncompatible // serialization
@GwtIncompatible // serialization
Object writeReplace() {
return super.writeReplace();
}
}
private static final class CharSequenceAsList extends AbstractList {
private final CharSequence sequence;
CharSequenceAsList(CharSequence sequence) {
this.sequence = sequence;
}
@Override
public Character get(int index) {
checkElementIndex(index, size()); // for GWT
return sequence.charAt(index);
}
@Override
public int size() {
return sequence.length();
}
}
/**
* Returns a reversed view of the specified list. For example, {@code
* Lists.reverse(Arrays.asList(1, 2, 3))} returns a list containing {@code 3, 2, 1}. The returned
* list is backed by this list, so changes in the returned list are reflected in this list, and
* vice-versa. The returned list supports all of the optional list operations supported by this
* list.
*
* The returned list is random-access if the specified list is random access.
*
* @since 7.0
*/
public static List reverse(List list) {
if (list instanceof ImmutableList) {
// Avoid nullness warnings.
List> reversed = ((ImmutableList>) list).reverse();
@SuppressWarnings("unchecked")
List result = (List) reversed;
return result;
} else if (list instanceof ReverseList) {
return ((ReverseList) list).getForwardList();
} else if (list instanceof RandomAccess) {
return new RandomAccessReverseList<>(list);
} else {
return new ReverseList<>(list);
}
}
private static class ReverseList extends AbstractList {
private final List forwardList;
ReverseList(List forwardList) {
this.forwardList = checkNotNull(forwardList);
}
List getForwardList() {
return forwardList;
}
private int reverseIndex(int index) {
int size = size();
checkElementIndex(index, size);
return (size - 1) - index;
}
private int reversePosition(int index) {
int size = size();
checkPositionIndex(index, size);
return size - index;
}
@Override
public void add(int index, @ParametricNullness T element) {
forwardList.add(reversePosition(index), element);
}
@Override
public void clear() {
forwardList.clear();
}
@Override
@ParametricNullness
public T remove(int index) {
return forwardList.remove(reverseIndex(index));
}
@Override
protected void removeRange(int fromIndex, int toIndex) {
subList(fromIndex, toIndex).clear();
}
@Override
@ParametricNullness
public T set(int index, @ParametricNullness T element) {
return forwardList.set(reverseIndex(index), element);
}
@Override
@ParametricNullness
public T get(int index) {
return forwardList.get(reverseIndex(index));
}
@Override
public int size() {
return forwardList.size();
}
@Override
public List subList(int fromIndex, int toIndex) {
checkPositionIndexes(fromIndex, toIndex, size());
return reverse(forwardList.subList(reversePosition(toIndex), reversePosition(fromIndex)));
}
@Override
public Iterator iterator() {
return listIterator();
}
@Override
public ListIterator listIterator(int index) {
int start = reversePosition(index);
final ListIterator forwardIterator = forwardList.listIterator(start);
return new ListIterator() {
boolean canRemoveOrSet;
@Override
public void add(@ParametricNullness T e) {
forwardIterator.add(e);
forwardIterator.previous();
canRemoveOrSet = false;
}
@Override
public boolean hasNext() {
return forwardIterator.hasPrevious();
}
@Override
public boolean hasPrevious() {
return forwardIterator.hasNext();
}
@Override
@ParametricNullness
public T next() {
if (!hasNext()) {
throw new NoSuchElementException();
}
canRemoveOrSet = true;
return forwardIterator.previous();
}
@Override
public int nextIndex() {
return reversePosition(forwardIterator.nextIndex());
}
@Override
@ParametricNullness
public T previous() {
if (!hasPrevious()) {
throw new NoSuchElementException();
}
canRemoveOrSet = true;
return forwardIterator.next();
}
@Override
public int previousIndex() {
return nextIndex() - 1;
}
@Override
public void remove() {
checkRemove(canRemoveOrSet);
forwardIterator.remove();
canRemoveOrSet = false;
}
@Override
public void set(@ParametricNullness T e) {
checkState(canRemoveOrSet);
forwardIterator.set(e);
}
};
}
}
private static class RandomAccessReverseList extends ReverseList
implements RandomAccess {
RandomAccessReverseList(List forwardList) {
super(forwardList);
}
}
/** An implementation of {@link List#hashCode()}. */
static int hashCodeImpl(List> list) {
// TODO(lowasser): worth optimizing for RandomAccess?
int hashCode = 1;
for (Object o : list) {
hashCode = 31 * hashCode + (o == null ? 0 : o.hashCode());
hashCode = ~~hashCode;
// needed to deal with GWT integer overflow
}
return hashCode;
}
/** An implementation of {@link List#equals(Object)}. */
static boolean equalsImpl(List> thisList, @CheckForNull Object other) {
if (other == checkNotNull(thisList)) {
return true;
}
if (!(other instanceof List)) {
return false;
}
List> otherList = (List>) other;
int size = thisList.size();
if (size != otherList.size()) {
return false;
}
if (thisList instanceof RandomAccess && otherList instanceof RandomAccess) {
// avoid allocation and use the faster loop
for (int i = 0; i < size; i++) {
if (!Objects.equal(thisList.get(i), otherList.get(i))) {
return false;
}
}
return true;
} else {
return Iterators.elementsEqual(thisList.iterator(), otherList.iterator());
}
}
/** An implementation of {@link List#addAll(int, Collection)}. */
static boolean addAllImpl(
List list, int index, Iterable extends E> elements) {
boolean changed = false;
ListIterator listIterator = list.listIterator(index);
for (E e : elements) {
listIterator.add(e);
changed = true;
}
return changed;
}
/** An implementation of {@link List#indexOf(Object)}. */
static int indexOfImpl(List> list, @CheckForNull Object element) {
if (list instanceof RandomAccess) {
return indexOfRandomAccess(list, element);
} else {
ListIterator> listIterator = list.listIterator();
while (listIterator.hasNext()) {
if (Objects.equal(element, listIterator.next())) {
return listIterator.previousIndex();
}
}
return -1;
}
}
private static int indexOfRandomAccess(List> list, @CheckForNull Object element) {
int size = list.size();
if (element == null) {
for (int i = 0; i < size; i++) {
if (list.get(i) == null) {
return i;
}
}
} else {
for (int i = 0; i < size; i++) {
if (element.equals(list.get(i))) {
return i;
}
}
}
return -1;
}
/** An implementation of {@link List#lastIndexOf(Object)}. */
static int lastIndexOfImpl(List> list, @CheckForNull Object element) {
if (list instanceof RandomAccess) {
return lastIndexOfRandomAccess(list, element);
} else {
ListIterator> listIterator = list.listIterator(list.size());
while (listIterator.hasPrevious()) {
if (Objects.equal(element, listIterator.previous())) {
return listIterator.nextIndex();
}
}
return -1;
}
}
private static int lastIndexOfRandomAccess(List> list, @CheckForNull Object element) {
if (element == null) {
for (int i = list.size() - 1; i >= 0; i--) {
if (list.get(i) == null) {
return i;
}
}
} else {
for (int i = list.size() - 1; i >= 0; i--) {
if (element.equals(list.get(i))) {
return i;
}
}
}
return -1;
}
/** Returns an implementation of {@link List#listIterator(int)}. */
static ListIterator listIteratorImpl(List list, int index) {
return new AbstractListWrapper<>(list).listIterator(index);
}
/** An implementation of {@link List#subList(int, int)}. */
static List subListImpl(
final List list, int fromIndex, int toIndex) {
List wrapper;
if (list instanceof RandomAccess) {
wrapper =
new RandomAccessListWrapper(list) {
@Override
public ListIterator listIterator(int index) {
return backingList.listIterator(index);
}
@J2ktIncompatible private static final long serialVersionUID = 0;
};
} else {
wrapper =
new AbstractListWrapper(list) {
@Override
public ListIterator listIterator(int index) {
return backingList.listIterator(index);
}
@J2ktIncompatible private static final long serialVersionUID = 0;
};
}
return wrapper.subList(fromIndex, toIndex);
}
private static class AbstractListWrapper extends AbstractList {
final List backingList;
AbstractListWrapper(List backingList) {
this.backingList = checkNotNull(backingList);
}
@Override
public void add(int index, @ParametricNullness E element) {
backingList.add(index, element);
}
@Override
public boolean addAll(int index, Collection extends E> c) {
return backingList.addAll(index, c);
}
@Override
@ParametricNullness
public E get(int index) {
return backingList.get(index);
}
@Override
@ParametricNullness
public E remove(int index) {
return backingList.remove(index);
}
@Override
@ParametricNullness
public E set(int index, @ParametricNullness E element) {
return backingList.set(index, element);
}
@Override
public boolean contains(@CheckForNull Object o) {
return backingList.contains(o);
}
@Override
public int size() {
return backingList.size();
}
}
private static class RandomAccessListWrapper
extends AbstractListWrapper implements RandomAccess {
RandomAccessListWrapper(List backingList) {
super(backingList);
}
}
/** Used to avoid http://bugs.sun.com/view_bug.do?bug_id=6558557 */
static List cast(Iterable iterable) {
return (List) iterable;
}
}