dev.langchain4j.model.jlama.JlamaChatModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of langchain4j-jlama Show documentation
Show all versions of langchain4j-jlama Show documentation
Jlama: Pure Java LLM Inference Engine - Requires Java 21
The newest version!
package dev.langchain4j.model.jlama;
import com.github.tjake.jlama.model.AbstractModel;
import com.github.tjake.jlama.model.functions.Generator;
import com.github.tjake.jlama.safetensors.DType;
import com.github.tjake.jlama.safetensors.prompt.*;
import com.github.tjake.jlama.util.JsonSupport;
import dev.langchain4j.agent.tool.ToolExecutionRequest;
import dev.langchain4j.agent.tool.ToolSpecification;
import dev.langchain4j.data.message.*;
import dev.langchain4j.internal.Json;
import dev.langchain4j.internal.RetryUtils;
import dev.langchain4j.model.chat.ChatLanguageModel;
import dev.langchain4j.model.jlama.spi.JlamaChatModelBuilderFactory;
import dev.langchain4j.model.output.Response;
import dev.langchain4j.model.output.TokenUsage;
import lombok.Builder;
import java.nio.file.Path;
import java.util.*;
import static dev.langchain4j.model.jlama.JlamaLanguageModel.toFinishReason;
import static dev.langchain4j.spi.ServiceHelper.loadFactories;
public class JlamaChatModel implements ChatLanguageModel {
private final AbstractModel model;
private final Float temperature;
private final Integer maxTokens;
@Builder
public JlamaChatModel(Path modelCachePath,
String modelName,
String authToken,
Integer threadCount,
Boolean quantizeModelAtRuntime,
Path workingDirectory,
DType workingQuantizedType,
Float temperature,
Integer maxTokens) {
JlamaModelRegistry registry = JlamaModelRegistry.getOrCreate(modelCachePath);
JlamaModel jlamaModel = RetryUtils.withRetry(() -> registry.downloadModel(modelName, Optional.ofNullable(authToken)), 3);
JlamaModel.Loader loader = jlamaModel.loader();
if (quantizeModelAtRuntime != null && quantizeModelAtRuntime)
loader = loader.quantized();
if (workingQuantizedType != null)
loader = loader.workingQuantizationType(workingQuantizedType);
if (threadCount != null)
loader = loader.threadCount(threadCount);
if (workingDirectory != null)
loader = loader.workingDirectory(workingDirectory);
this.model = loader.load();
this.temperature = temperature == null ? 0.3f : temperature;
this.maxTokens = maxTokens == null ? model.getConfig().contextLength : maxTokens;
}
public static JlamaChatModelBuilder builder() {
for (JlamaChatModelBuilderFactory factory : loadFactories(JlamaChatModelBuilderFactory.class)) {
return factory.get();
}
return new JlamaChatModelBuilder();
}
@Override
public Response generate(List messages) {
return generate(messages, List.of());
}
@Override
public Response generate(List messages, List toolSpecifications) {
if (model.promptSupport().isEmpty())
throw new UnsupportedOperationException("This model does not support chat generation");
PromptSupport.Builder promptBuilder = model.promptSupport().get().builder();
for (ChatMessage message : messages) {
switch (message.type()) {
case SYSTEM -> promptBuilder.addSystemMessage(((SystemMessage)message).text());
case USER -> {
StringBuilder finalMessage = new StringBuilder();
UserMessage userMessage = (UserMessage)message;
for (Content content : userMessage.contents()) {
if (content.type() != ContentType.TEXT)
throw new UnsupportedOperationException("Unsupported content type: " + content.type());
finalMessage.append(((TextContent)content).text());
}
promptBuilder.addUserMessage(finalMessage.toString());
}
case AI -> {
AiMessage aiMessage = (AiMessage) message;
if (aiMessage.text() != null)
promptBuilder.addAssistantMessage(aiMessage.text());
if (aiMessage.hasToolExecutionRequests())
for (ToolExecutionRequest toolExecutionRequest : aiMessage.toolExecutionRequests()) {
ToolCall toolCall = new ToolCall(toolExecutionRequest.name(), toolExecutionRequest.id(), Json.fromJson(toolExecutionRequest.arguments(), LinkedHashMap.class));
promptBuilder.addToolCall(toolCall);
}
}
case TOOL_EXECUTION_RESULT -> {
ToolExecutionResultMessage toolMessage = (ToolExecutionResultMessage)message;
ToolResult result = ToolResult.from(toolMessage.toolName(), toolMessage.id(), toolMessage.text());
promptBuilder.addToolResult(result);
}
default -> throw new IllegalArgumentException("Unsupported message type: " + message.type());
}
}
List tools = toolSpecifications.stream().map(JlamaModel::toTool).toList();
PromptContext promptContext = tools.isEmpty() ? promptBuilder.build() : promptBuilder.build(tools);
Generator.Response r = model.generate(UUID.randomUUID(), promptContext, temperature, maxTokens, (token, time) -> {});
if (r.finishReason == Generator.FinishReason.TOOL_CALL) {
List toolCalls = r.toolCalls.stream().map(f -> ToolExecutionRequest.builder()
.name(f.getName())
.id(f.getId())
.arguments(JsonSupport.toJson(f.getParameters()))
.build()).toList();
return Response.from(AiMessage.from(toolCalls), new TokenUsage(r.promptTokens, r.generatedTokens), toFinishReason(r.finishReason));
}
return Response.from(AiMessage.from(r.responseText), new TokenUsage(r.promptTokens, r.generatedTokens), toFinishReason(r.finishReason));
}
@Override
public Response generate(List messages, ToolSpecification toolSpecification) {
return generate(messages, List.of(toolSpecification));
}
public static class JlamaChatModelBuilder {
public JlamaChatModelBuilder() {
// This is public, so it can be extended
// By default with Lombok it becomes package private
}
}
}