dev.langchain4j.model.jlama.JlamaStreamingChatModel Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of langchain4j-jlama Show documentation
Show all versions of langchain4j-jlama Show documentation
Jlama: Pure Java LLM Inference Engine - Requires Java 21
The newest version!
package dev.langchain4j.model.jlama;
import com.github.tjake.jlama.model.AbstractModel;
import com.github.tjake.jlama.model.functions.Generator;
import com.github.tjake.jlama.safetensors.DType;
import com.github.tjake.jlama.safetensors.prompt.PromptSupport;
import dev.langchain4j.data.message.AiMessage;
import dev.langchain4j.data.message.ChatMessage;
import dev.langchain4j.internal.RetryUtils;
import dev.langchain4j.model.StreamingResponseHandler;
import dev.langchain4j.model.chat.StreamingChatLanguageModel;
import dev.langchain4j.model.jlama.spi.JlamaStreamingChatModelBuilderFactory;
import dev.langchain4j.model.output.Response;
import dev.langchain4j.model.output.TokenUsage;
import lombok.Builder;
import java.nio.file.Path;
import java.util.List;
import java.util.Optional;
import java.util.UUID;
import static dev.langchain4j.model.jlama.JlamaLanguageModel.toFinishReason;
import static dev.langchain4j.spi.ServiceHelper.loadFactories;
public class JlamaStreamingChatModel implements StreamingChatLanguageModel {
private final AbstractModel model;
private final Float temperature;
private final Integer maxTokens;
private final UUID id = UUID.randomUUID();
@Builder
public JlamaStreamingChatModel(Path modelCachePath,
String modelName,
String authToken,
Integer threadCount,
Boolean quantizeModelAtRuntime,
Path workingDirectory,
DType workingQuantizedType,
Float temperature,
Integer maxTokens) {
JlamaModelRegistry registry = JlamaModelRegistry.getOrCreate(modelCachePath);
JlamaModel jlamaModel = RetryUtils.withRetry(() -> registry.downloadModel(modelName, Optional.ofNullable(authToken)), 3);
JlamaModel.Loader loader = jlamaModel.loader();
if (quantizeModelAtRuntime != null && quantizeModelAtRuntime)
loader = loader.quantized();
if (workingQuantizedType != null)
loader = loader.workingQuantizationType(workingQuantizedType);
if (threadCount != null)
loader = loader.threadCount(threadCount);
if (workingDirectory != null)
loader = loader.workingDirectory(workingDirectory);
this.model = loader.load();
this.temperature = temperature == null ? 0.7f : temperature;
this.maxTokens = maxTokens == null ? model.getConfig().contextLength : maxTokens;
}
public static JlamaStreamingChatModelBuilder builder() {
for (JlamaStreamingChatModelBuilderFactory factory : loadFactories(JlamaStreamingChatModelBuilderFactory.class)) {
return factory.get();
}
return new JlamaStreamingChatModelBuilder();
}
@Override
public void generate(List messages, StreamingResponseHandler handler) {
if (model.promptSupport().isEmpty())
throw new UnsupportedOperationException("This model does not support chat generation");
PromptSupport.Builder promptBuilder = model.promptSupport().get().builder();
for (ChatMessage message : messages) {
switch (message.type()) {
case SYSTEM -> promptBuilder.addSystemMessage(message.text());
case USER -> promptBuilder.addUserMessage(message.text());
case AI -> promptBuilder.addAssistantMessage(message.text());
default -> throw new IllegalArgumentException("Unsupported message type: " + message.type());
}
}
try {
Generator.Response r = model.generate(id, promptBuilder.build(), temperature, maxTokens, (token, time) -> {
handler.onNext(token);
});
handler.onComplete(Response.from(AiMessage.from(r.responseText), new TokenUsage(r.promptTokens, r.generatedTokens), toFinishReason(r.finishReason)));
} catch (Throwable t) {
handler.onError(t);
}
}
public static class JlamaStreamingChatModelBuilder {
public JlamaStreamingChatModelBuilder() {
// This is public, so it can be extended
// By default with Lombok it becomes package private
}
}
}