All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hct.Cam16 Maven / Gradle / Ivy

Go to download

A gradle plugin that generates Material Design 3 themes for Android projects.

The newest version!
/*
 * Copyright 2021 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package hct;

import static java.lang.Math.max;

import utils.ColorUtils;

/**
 * CAM16, a color appearance model. Colors are not just defined by their hex code, but rather, a hex
 * code and viewing conditions.
 *
 * 

CAM16 instances also have coordinates in the CAM16-UCS space, called J*, a*, b*, or jstar, * astar, bstar in code. CAM16-UCS is included in the CAM16 specification, and should be used when * measuring distances between colors. * *

In traditional color spaces, a color can be identified solely by the observer's measurement of * the color. Color appearance models such as CAM16 also use information about the environment where * the color was observed, known as the viewing conditions. * *

For example, white under the traditional assumption of a midday sun white point is accurately * measured as a slightly chromatic blue by CAM16. (roughly, hue 203, chroma 3, lightness 100) */ public final class Cam16 { // Transforms XYZ color space coordinates to 'cone'/'RGB' responses in CAM16. static final double[][] XYZ_TO_CAM16RGB = { {0.401288, 0.650173, -0.051461}, {-0.250268, 1.204414, 0.045854}, {-0.002079, 0.048952, 0.953127} }; // Transforms 'cone'/'RGB' responses in CAM16 to XYZ color space coordinates. static final double[][] CAM16RGB_TO_XYZ = { {1.8620678, -1.0112547, 0.14918678}, {0.38752654, 0.62144744, -0.00897398}, {-0.01584150, -0.03412294, 1.0499644} }; // CAM16 color dimensions, see getters for documentation. private final double hue; private final double chroma; private final double j; private final double q; private final double m; private final double s; // Coordinates in UCS space. Used to determine color distance, like delta E equations in L*a*b*. private final double jstar; private final double astar; private final double bstar; // Avoid allocations during conversion by pre-allocating an array. private final double[] tempArray = new double[] {0.0, 0.0, 0.0}; /** * CAM16 instances also have coordinates in the CAM16-UCS space, called J*, a*, b*, or jstar, * astar, bstar in code. CAM16-UCS is included in the CAM16 specification, and is used to measure * distances between colors. */ public double distance(Cam16 other) { double dJ = getJstar() - other.getJstar(); double dA = getAstar() - other.getAstar(); double dB = getBstar() - other.getBstar(); double dEPrime = Math.sqrt(dJ * dJ + dA * dA + dB * dB); double dE = 1.41 * Math.pow(dEPrime, 0.63); return dE; } /** Hue in CAM16 */ public double getHue() { return hue; } /** Chroma in CAM16 */ public double getChroma() { return chroma; } /** Lightness in CAM16 */ public double getJ() { return j; } /** * Brightness in CAM16. * *

Prefer lightness, brightness is an absolute quantity. For example, a sheet of white paper is * much brighter viewed in sunlight than in indoor light, but it is the lightest object under any * lighting. */ public double getQ() { return q; } /** * Colorfulness in CAM16. * *

Prefer chroma, colorfulness is an absolute quantity. For example, a yellow toy car is much * more colorful outside than inside, but it has the same chroma in both environments. */ public double getM() { return m; } /** * Saturation in CAM16. * *

Colorfulness in proportion to brightness. Prefer chroma, saturation measures colorfulness * relative to the color's own brightness, where chroma is colorfulness relative to white. */ public double getS() { return s; } /** Lightness coordinate in CAM16-UCS */ public double getJstar() { return jstar; } /** a* coordinate in CAM16-UCS */ public double getAstar() { return astar; } /** b* coordinate in CAM16-UCS */ public double getBstar() { return bstar; } /** * All of the CAM16 dimensions can be calculated from 3 of the dimensions, in the following * combinations: - {j or q} and {c, m, or s} and hue - jstar, astar, bstar Prefer using a static * method that constructs from 3 of those dimensions. This constructor is intended for those * methods to use to return all possible dimensions. * * @param hue for example, red, orange, yellow, green, etc. * @param chroma informally, colorfulness / color intensity. like saturation in HSL, except * perceptually accurate. * @param j lightness * @param q brightness; ratio of lightness to white point's lightness * @param m colorfulness * @param s saturation; ratio of chroma to white point's chroma * @param jstar CAM16-UCS J coordinate * @param astar CAM16-UCS a coordinate * @param bstar CAM16-UCS b coordinate */ private Cam16( double hue, double chroma, double j, double q, double m, double s, double jstar, double astar, double bstar) { this.hue = hue; this.chroma = chroma; this.j = j; this.q = q; this.m = m; this.s = s; this.jstar = jstar; this.astar = astar; this.bstar = bstar; } /** * Create a CAM16 color from a color, assuming the color was viewed in default viewing conditions. * * @param argb ARGB representation of a color. */ public static Cam16 fromInt(int argb) { return fromIntInViewingConditions(argb, ViewingConditions.DEFAULT); } /** * Create a CAM16 color from a color in defined viewing conditions. * * @param argb ARGB representation of a color. * @param viewingConditions Information about the environment where the color was observed. */ // The RGB => XYZ conversion matrix elements are derived scientific constants. While the values // may differ at runtime due to floating point imprecision, keeping the values the same, and // accurate, across implementations takes precedence. @SuppressWarnings("FloatingPointLiteralPrecision") static Cam16 fromIntInViewingConditions(int argb, ViewingConditions viewingConditions) { // Transform ARGB int to XYZ int red = (argb & 0x00ff0000) >> 16; int green = (argb & 0x0000ff00) >> 8; int blue = (argb & 0x000000ff); double redL = ColorUtils.linearized(red); double greenL = ColorUtils.linearized(green); double blueL = ColorUtils.linearized(blue); double x = 0.41233895 * redL + 0.35762064 * greenL + 0.18051042 * blueL; double y = 0.2126 * redL + 0.7152 * greenL + 0.0722 * blueL; double z = 0.01932141 * redL + 0.11916382 * greenL + 0.95034478 * blueL; return fromXyzInViewingConditions(x, y, z, viewingConditions); } static Cam16 fromXyzInViewingConditions( double x, double y, double z, ViewingConditions viewingConditions) { // Transform XYZ to 'cone'/'rgb' responses double[][] matrix = XYZ_TO_CAM16RGB; double rT = (x * matrix[0][0]) + (y * matrix[0][1]) + (z * matrix[0][2]); double gT = (x * matrix[1][0]) + (y * matrix[1][1]) + (z * matrix[1][2]); double bT = (x * matrix[2][0]) + (y * matrix[2][1]) + (z * matrix[2][2]); // Discount illuminant double rD = viewingConditions.getRgbD()[0] * rT; double gD = viewingConditions.getRgbD()[1] * gT; double bD = viewingConditions.getRgbD()[2] * bT; // Chromatic adaptation double rAF = Math.pow(viewingConditions.getFl() * Math.abs(rD) / 100.0, 0.42); double gAF = Math.pow(viewingConditions.getFl() * Math.abs(gD) / 100.0, 0.42); double bAF = Math.pow(viewingConditions.getFl() * Math.abs(bD) / 100.0, 0.42); double rA = Math.signum(rD) * 400.0 * rAF / (rAF + 27.13); double gA = Math.signum(gD) * 400.0 * gAF / (gAF + 27.13); double bA = Math.signum(bD) * 400.0 * bAF / (bAF + 27.13); // redness-greenness double a = (11.0 * rA + -12.0 * gA + bA) / 11.0; // yellowness-blueness double b = (rA + gA - 2.0 * bA) / 9.0; // auxiliary components double u = (20.0 * rA + 20.0 * gA + 21.0 * bA) / 20.0; double p2 = (40.0 * rA + 20.0 * gA + bA) / 20.0; // hue double atan2 = Math.atan2(b, a); double atanDegrees = Math.toDegrees(atan2); double hue = atanDegrees < 0 ? atanDegrees + 360.0 : atanDegrees >= 360 ? atanDegrees - 360.0 : atanDegrees; double hueRadians = Math.toRadians(hue); // achromatic response to color double ac = p2 * viewingConditions.getNbb(); // CAM16 lightness and brightness double j = 100.0 * Math.pow( ac / viewingConditions.getAw(), viewingConditions.getC() * viewingConditions.getZ()); double q = 4.0 / viewingConditions.getC() * Math.sqrt(j / 100.0) * (viewingConditions.getAw() + 4.0) * viewingConditions.getFlRoot(); // CAM16 chroma, colorfulness, and saturation. double huePrime = (hue < 20.14) ? hue + 360 : hue; double eHue = 0.25 * (Math.cos(Math.toRadians(huePrime) + 2.0) + 3.8); double p1 = 50000.0 / 13.0 * eHue * viewingConditions.getNc() * viewingConditions.getNcb(); double t = p1 * Math.hypot(a, b) / (u + 0.305); double alpha = Math.pow(1.64 - Math.pow(0.29, viewingConditions.getN()), 0.73) * Math.pow(t, 0.9); // CAM16 chroma, colorfulness, saturation double c = alpha * Math.sqrt(j / 100.0); double m = c * viewingConditions.getFlRoot(); double s = 50.0 * Math.sqrt((alpha * viewingConditions.getC()) / (viewingConditions.getAw() + 4.0)); // CAM16-UCS components double jstar = (1.0 + 100.0 * 0.007) * j / (1.0 + 0.007 * j); double mstar = 1.0 / 0.0228 * Math.log1p(0.0228 * m); double astar = mstar * Math.cos(hueRadians); double bstar = mstar * Math.sin(hueRadians); return new Cam16(hue, c, j, q, m, s, jstar, astar, bstar); } /** * @param j CAM16 lightness * @param c CAM16 chroma * @param h CAM16 hue */ static Cam16 fromJch(double j, double c, double h) { return fromJchInViewingConditions(j, c, h, ViewingConditions.DEFAULT); } /** * @param j CAM16 lightness * @param c CAM16 chroma * @param h CAM16 hue * @param viewingConditions Information about the environment where the color was observed. */ private static Cam16 fromJchInViewingConditions( double j, double c, double h, ViewingConditions viewingConditions) { double q = 4.0 / viewingConditions.getC() * Math.sqrt(j / 100.0) * (viewingConditions.getAw() + 4.0) * viewingConditions.getFlRoot(); double m = c * viewingConditions.getFlRoot(); double alpha = c / Math.sqrt(j / 100.0); double s = 50.0 * Math.sqrt((alpha * viewingConditions.getC()) / (viewingConditions.getAw() + 4.0)); double hueRadians = Math.toRadians(h); double jstar = (1.0 + 100.0 * 0.007) * j / (1.0 + 0.007 * j); double mstar = 1.0 / 0.0228 * Math.log1p(0.0228 * m); double astar = mstar * Math.cos(hueRadians); double bstar = mstar * Math.sin(hueRadians); return new Cam16(h, c, j, q, m, s, jstar, astar, bstar); } /** * Create a CAM16 color from CAM16-UCS coordinates. * * @param jstar CAM16-UCS lightness. * @param astar CAM16-UCS a dimension. Like a* in L*a*b*, it is a Cartesian coordinate on the Y * axis. * @param bstar CAM16-UCS b dimension. Like a* in L*a*b*, it is a Cartesian coordinate on the X * axis. */ public static Cam16 fromUcs(double jstar, double astar, double bstar) { return fromUcsInViewingConditions(jstar, astar, bstar, ViewingConditions.DEFAULT); } /** * Create a CAM16 color from CAM16-UCS coordinates in defined viewing conditions. * * @param jstar CAM16-UCS lightness. * @param astar CAM16-UCS a dimension. Like a* in L*a*b*, it is a Cartesian coordinate on the Y * axis. * @param bstar CAM16-UCS b dimension. Like a* in L*a*b*, it is a Cartesian coordinate on the X * axis. * @param viewingConditions Information about the environment where the color was observed. */ public static Cam16 fromUcsInViewingConditions( double jstar, double astar, double bstar, ViewingConditions viewingConditions) { double m = Math.hypot(astar, bstar); double m2 = Math.expm1(m * 0.0228) / 0.0228; double c = m2 / viewingConditions.getFlRoot(); double h = Math.atan2(bstar, astar) * (180.0 / Math.PI); if (h < 0.0) { h += 360.0; } double j = jstar / (1. - (jstar - 100.) * 0.007); return fromJchInViewingConditions(j, c, h, viewingConditions); } /** * ARGB representation of the color. Assumes the color was viewed in default viewing conditions, * which are near-identical to the default viewing conditions for sRGB. */ public int toInt() { return viewed(ViewingConditions.DEFAULT); } /** * ARGB representation of the color, in defined viewing conditions. * * @param viewingConditions Information about the environment where the color will be viewed. * @return ARGB representation of color */ int viewed(ViewingConditions viewingConditions) { double[] xyz = xyzInViewingConditions(viewingConditions, tempArray); return ColorUtils.argbFromXyz(xyz[0], xyz[1], xyz[2]); } double[] xyzInViewingConditions(ViewingConditions viewingConditions, double[] returnArray) { double alpha = (getChroma() == 0.0 || getJ() == 0.0) ? 0.0 : getChroma() / Math.sqrt(getJ() / 100.0); double t = Math.pow( alpha / Math.pow(1.64 - Math.pow(0.29, viewingConditions.getN()), 0.73), 1.0 / 0.9); double hRad = Math.toRadians(getHue()); double eHue = 0.25 * (Math.cos(hRad + 2.0) + 3.8); double ac = viewingConditions.getAw() * Math.pow(getJ() / 100.0, 1.0 / viewingConditions.getC() / viewingConditions.getZ()); double p1 = eHue * (50000.0 / 13.0) * viewingConditions.getNc() * viewingConditions.getNcb(); double p2 = (ac / viewingConditions.getNbb()); double hSin = Math.sin(hRad); double hCos = Math.cos(hRad); double gamma = 23.0 * (p2 + 0.305) * t / (23.0 * p1 + 11.0 * t * hCos + 108.0 * t * hSin); double a = gamma * hCos; double b = gamma * hSin; double rA = (460.0 * p2 + 451.0 * a + 288.0 * b) / 1403.0; double gA = (460.0 * p2 - 891.0 * a - 261.0 * b) / 1403.0; double bA = (460.0 * p2 - 220.0 * a - 6300.0 * b) / 1403.0; double rCBase = max(0, (27.13 * Math.abs(rA)) / (400.0 - Math.abs(rA))); double rC = Math.signum(rA) * (100.0 / viewingConditions.getFl()) * Math.pow(rCBase, 1.0 / 0.42); double gCBase = max(0, (27.13 * Math.abs(gA)) / (400.0 - Math.abs(gA))); double gC = Math.signum(gA) * (100.0 / viewingConditions.getFl()) * Math.pow(gCBase, 1.0 / 0.42); double bCBase = max(0, (27.13 * Math.abs(bA)) / (400.0 - Math.abs(bA))); double bC = Math.signum(bA) * (100.0 / viewingConditions.getFl()) * Math.pow(bCBase, 1.0 / 0.42); double rF = rC / viewingConditions.getRgbD()[0]; double gF = gC / viewingConditions.getRgbD()[1]; double bF = bC / viewingConditions.getRgbD()[2]; double[][] matrix = CAM16RGB_TO_XYZ; double x = (rF * matrix[0][0]) + (gF * matrix[0][1]) + (bF * matrix[0][2]); double y = (rF * matrix[1][0]) + (gF * matrix[1][1]) + (bF * matrix[1][2]); double z = (rF * matrix[2][0]) + (gF * matrix[2][1]) + (bF * matrix[2][2]); if (returnArray != null) { returnArray[0] = x; returnArray[1] = y; returnArray[2] = z; return returnArray; } else { return new double[] {x, y, z}; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy