dev.tauri.choam.laws.RxnLaws.scala Maven / Gradle / Ivy
/*
* SPDX-License-Identifier: Apache-2.0
* Copyright 2016-2024 Daniel Urban and contributors listed in NOTICE.txt
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package dev.tauri.choam
package laws
import cats.laws.IsEq
import cats.laws.IsEqArrow
import Rxn.{ pure, ret, lift, computed }
import Rxn.unsafe.retry
sealed trait RxnLaws {
// This is to make sure our `Arbitrary` instance
// only creates deterministic `Rxn`s.
def equalsItself[A, B](rxn: Rxn[A, B]): IsEq[Rxn[A, B]] = {
rxn <-> rxn
}
def asIsMap[A, B, C](rxn: A =#> B, c: C): IsEq[A =#> C] =
rxn.as(c) <-> rxn.map[C](_ => c)
def voidIsMap[A, B](rxn: A =#> B): IsEq[A =#> Unit] =
rxn.void <-> rxn.map[Unit](_ => ())
def provideIsContramap[A, B](a: A, rxn: A =#> B): IsEq[Axn[B]] =
rxn.provide(a) <-> rxn.contramap[Any](_ => a)
def pureIsRet[A](a: A): IsEq[Axn[A]] =
pure(a) <-> ret(a)
def toFunctionIsProvide[A, B](rxn: A =#> B, a: A): IsEq[Axn[B]] =
rxn.toFunction(a) <-> rxn.provide(a)
def mapIsAndThenLift[A, B, C](rxn: A =#> B, f: B => C): IsEq[Rxn[A, C]] =
rxn.map(f) <-> (rxn >>> lift(f))
def contramapIsLiftAndThen[A, B, C](f: A => B, rxn: B =#> C): IsEq[Rxn[A, C]] =
rxn.contramap(f) <-> (lift(f) >>> rxn)
def timesIsAndAlso[A, B, C](x: A =#> B, y: A =#> C): IsEq[A =#> (B, C)] =
(x * y) <-> (x × y).contramap[A](a => (a, a))
def andAlsoIsAndThen[A, B, C, D](x: A =#> B, y: C =#> D): IsEq[Rxn[(A, C), (B, D)]] =
(x × y) <-> (x.first[C] >>> y.second[B])
def distributiveAndThenChoice1[A, B, C](x: A =#> B, y: B =#> C, z: B =#> C): IsEq[Rxn[A, C]] =
(x >>> (y + z)) <-> ((x >>> y) + (x >>> z))
def distributiveAndThenChoice2[A, B, C](x: A =#> B, y: A =#> B, z: B =#> C): IsEq[Rxn[A, C]] =
((x + y) >>> z) <-> ((x >>> z) + (y >>> z))
def distributiveAndAlsoChoice1[A, B, C, D](x: A =#> B, y: C =#> D, z: C =#> D): IsEq[Rxn[(A, C), (B, D)]] =
(x × (y + z)) <-> ((x × y) + (x × z))
def distributiveAndAlsoChoice2[A, B, C, D](x: A =#> B, y: A =#> B, z: C =#> D): IsEq[Rxn[(A, C), (B, D)]] =
((x + y) × z) <-> ((x × z) + (y × z))
def associativeAndAlso[A, B, C, D, E, F](x: A =#> B, y: C =#> D, z: E =#> F): IsEq[Rxn[((A, C), E), ((B, D), F)]] = {
((x × y) × z) <-> (x × (y × z)).dimap[((A, C), E), ((B, D), F)](
ac_e => (ac_e._1._1, (ac_e._1._2, ac_e._2))
)(
b_df => ((b_df._1, b_df._2._1), b_df._2._2)
)
}
def flatMapFIsAndThenComputed[A, B, C](x: A =#> B, f: B => Axn[C]): IsEq[Rxn[A, C]] =
x.flatMapF(f) <-> (x >>> computed(f))
def flatMapIsSecondAndThenComputed[A, B, C](x: A =#> B, f: B => Rxn[A, C]): IsEq[Rxn[A, C]] =
x.flatMap(f) <-> flatMapDerived(x, f)
private def flatMapDerived[A, B, C](rxn: Rxn[A, B], f: B => Rxn[A, C]): Rxn[A, C] = {
val self: Rxn[A, (A, B)] = rxn.second[A].contramap[A](x => (x, x))
val comp: Rxn[(A, B), C] = computed[(A, B), C](xb => f(xb._2).provide(xb._1))
self >>> comp
}
// TODO: does this always hold?
def choiceRetryNeutralRight[A, B](x: A =#> B) =
(x + retry[A, B]) <-> x
// TODO: does this always hold?
def choiceRetryNeutralLeft[A, B](x: A =#> B) =
(retry[A, B] + x) <-> x
// TODO: do these make a monoid with `+`?
}
object RxnLaws {
def newRxnLaws: RxnLaws =
new RxnLaws {}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy