Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright 2019-2023 John A. De Goes and the ZIO Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package zio.test
import zio.Random._
import zio.stacktracer.TracingImplicits.disableAutoTrace
import zio.stream.{Stream, ZStream}
import zio.{Chunk, NonEmptyChunk, Random, UIO, URIO, ZIO, Zippable, Trace}
import java.nio.charset.StandardCharsets
import java.util.UUID
import scala.collection.immutable.SortedMap
import scala.math.Numeric.DoubleIsFractional
/**
* A `Gen[R, A]` represents a generator of values of type `A`, which requires an
* environment `R`. Generators may be random or deterministic.
*/
final case class Gen[-R, +A](sample: ZStream[R, Nothing, Sample[R, A]]) { self =>
/**
* A symbolic alias for `concat`.
*/
def ++[R1 <: R, A1 >: A](that: Gen[R1, A1])(implicit trace: Trace): Gen[R1, A1] =
self.concat(that)
/**
* A symbolic alias for `zip`.
*/
def <*>[R1 <: R, B](
that: Gen[R1, B]
)(implicit zippable: Zippable[A, B], trace: Trace): Gen[R1, zippable.Out] =
self.zip(that)
/**
* Concatenates the specified deterministic generator with this determinstic
* generator, resulting in a deterministic generator that generates the values
* from this generator and then the values from the specified generator.
*/
def concat[R1 <: R, A1 >: A](that: Gen[R1, A1])(implicit trace: Trace): Gen[R1, A1] =
Gen(self.sample ++ that.sample)
/**
* Maps the values produced by this generator with the specified partial
* function, discarding any values the partial function is not defined at.
*/
def collect[B](pf: PartialFunction[A, B])(implicit trace: Trace): Gen[R, B] =
self.flatMap { a =>
pf.andThen(Gen.const(_)).applyOrElse[A, Gen[Any, B]](a, _ => Gen.empty)
}
/**
* Filters the values produced by this generator, discarding any values that
* do not meet the specified predicate. Using `filter` can reduce test
* performance, especially if many values must be discarded. It is recommended
* to use combinators such as `map` and `flatMap` to create generators of the
* desired values instead.
*
* {{{
* val evens: Gen[Any, Int] = Gen.int.map(_ * 2)
* }}}
*/
def filter(f: A => Boolean)(implicit trace: Trace): Gen[R, A] =
self.flatMap(a => if (f(a)) Gen.const(a) else Gen.empty)
/**
* Filters the values produced by this generator, discarding any values that
* meet the specified predicate.
*/
def filterNot(f: A => Boolean)(implicit trace: Trace): Gen[R, A] =
filter(a => !f(a))
def withFilter(f: A => Boolean)(implicit trace: Trace): Gen[R, A] = filter(f)
def flatMap[R1 <: R, B](f: A => Gen[R1, B])(implicit trace: Trace): Gen[R1, B] =
Gen {
self.sample.flatMap { sample =>
val values = f(sample.value).sample
val shrinks = Gen(sample.shrink).flatMap(f).sample
values.map(_.flatMap(Sample(_, shrinks)))
}
}
def flatten[R1 <: R, B](implicit ev: A <:< Gen[R1, B], trace: Trace): Gen[R1, B] =
flatMap(ev)
def map[B](f: A => B)(implicit trace: Trace): Gen[R, B] =
Gen(sample.map(_.map(f)))
/**
* Maps an effectual function over a generator.
*/
def mapZIO[R1 <: R, B](f: A => ZIO[R1, Nothing, B])(implicit trace: Trace): Gen[R1, B] =
Gen(sample.mapZIO(_.foreach(f)))
/**
* Discards the shrinker for this generator.
*/
def noShrink(implicit trace: Trace): Gen[R, A] =
reshrink(Sample.noShrink)
/**
* Discards the shrinker for this generator and applies a new shrinker by
* mapping each value to a sample using the specified function. This is useful
* when the process to shrink a value is simpler than the process used to
* generate it.
*/
def reshrink[R1 <: R, B](f: A => Sample[R1, B])(implicit trace: Trace): Gen[R1, B] =
Gen(sample.map(sample => f(sample.value)))
/**
* Sets the size parameter for this generator to the specified value.
*/
def resize(size: Int)(implicit trace: Trace): Gen[R, A] =
Sized.withSizeGen(size)(self)
/**
* Runs the generator and collects all of its values in a list.
*/
def runCollect(implicit trace: Trace): ZIO[R, Nothing, List[A]] =
sample.map(_.value).runCollect.map(_.toList)
/**
* Repeatedly runs the generator and collects the specified number of values
* in a list.
*/
def runCollectN(n: Int)(implicit trace: Trace): ZIO[R, Nothing, List[A]] =
sample.map(_.value).forever.take(n.toLong).runCollect.map(_.toList)
/**
* Runs the generator returning the first value of the generator.
*/
def runHead(implicit trace: Trace): ZIO[R, Nothing, Option[A]] =
sample.map(_.value).runHead
/**
* Composes this generator with the specified generator to create a cartesian
* product of elements.
*/
def zip[R1 <: R, B](
that: Gen[R1, B]
)(implicit zippable: Zippable[A, B], trace: Trace): Gen[R1, zippable.Out] =
self.zipWith(that)(zippable.zip(_, _))
/**
* Composes this generator with the specified generator to create a cartesian
* product of elements with the specified function.
*/
def zipWith[R1 <: R, B, C](that: Gen[R1, B])(f: (A, B) => C)(implicit trace: Trace): Gen[R1, C] =
self.flatMap(a => that.map(b => f(a, b)))
}
object Gen extends GenZIO with FunctionVariants with TimeVariants {
/**
* A generator of alpha characters.
*/
def alphaChar(implicit trace: Trace): Gen[Any, Char] =
weighted(char(65, 90) -> 26, char(97, 122) -> 26)
/**
* A generator of alphanumeric characters. Shrinks toward '0'.
*/
def alphaNumericChar(implicit trace: Trace): Gen[Any, Char] =
weighted(char(48, 57) -> 10, char(65, 90) -> 26, char(97, 122) -> 26)
/**
* A generator of alphanumeric strings. Shrinks towards the empty string.
*/
def alphaNumericString(implicit trace: Trace): Gen[Any, String] =
Gen.string(alphaNumericChar)
/**
* A generator of alphanumeric strings whose size falls within the specified
* bounds.
*/
def alphaNumericStringBounded(min: Int, max: Int)(implicit
trace: Trace
): Gen[Any, String] =
Gen.stringBounded(min, max)(alphaNumericChar)
/**
* A generator of US-ASCII characters. Shrinks toward '0'.
*/
def asciiChar(implicit trace: Trace): Gen[Any, Char] =
Gen.oneOf(Gen.char('\u0000', '\u007F'))
/**
* A generator US-ASCII strings. Shrinks towards the empty string.
*/
def asciiString(implicit trace: Trace): Gen[Any, String] =
Gen.string(Gen.asciiChar)
/**
* A generator of big decimals inside the specified range: [start, end]. The
* shrinker will shrink toward the lower end of the range ("smallest").
*
* The values generated will have a precision equal to the precision of the
* difference between `max` and `min`.
*/
def bigDecimal(min: BigDecimal, max: BigDecimal)(implicit trace: Trace): Gen[Any, BigDecimal] =
if (min > max)
Gen.fromZIO(ZIO.die(new IllegalArgumentException("invalid bounds")))
else {
val difference = max - min
val decimals = difference.scale max 0
val bigInt = (difference * BigDecimal(10).pow(decimals)).toBigInt
Gen.bigInt(0, bigInt).map(bigInt => min + BigDecimal(bigInt) / BigDecimal(10).pow(decimals))
}
/**
* A generator of [[java.math.BigDecimal]] inside the specified range: [start,
* end]. The shrinker will shrink toward the lower end of the range
* ("smallest").
*
* The values generated will have a precision equal to the precision of the
* difference between `max` and `min`.
* @see
* See [[bigDecimal]] for implementation.
*/
def bigDecimalJava(min: BigDecimal, max: BigDecimal)(implicit trace: Trace): Gen[Any, java.math.BigDecimal] =
Gen.bigDecimal(min, max).map(_.underlying)
/**
* A generator of big integers inside the specified range: [start, end]. The
* shrinker will shrink toward the lower end of the range ("smallest").
*/
def bigInt(min: BigInt, max: BigInt)(implicit trace: Trace): Gen[Any, BigInt] =
Gen.fromZIOSample {
if (min > max) ZIO.die(new IllegalArgumentException("invalid bounds"))
else {
val bitLength = (max - min).bitLength
val byteLength = ((bitLength.toLong + 7) / 8).toInt
val excessBits = byteLength * 8 - bitLength
val mask = (1 << (8 - excessBits)) - 1
val effect = nextBytes(byteLength).map { bytes =>
val arr = bytes.toArray
arr(0) = (arr(0) & mask).toByte
min + BigInt(arr)
}.repeatUntil(n => min <= n && n <= max)
effect.map(Sample.shrinkIntegral(min))
}
}
/**
* A generator of [[java.math.BigInteger]] inside the specified range: [start,
* end]. The shrinker will shrink toward the lower end of the range
* ("smallest").
* @see
* See [[bigInt]] for implementation.
*/
def bigIntegerJava(min: BigInt, max: BigInt)(implicit trace: Trace): Gen[Any, java.math.BigInteger] =
Gen.bigInt(min, max).map(_.underlying)
/**
* A generator of booleans. Shrinks toward 'false'.
*/
def boolean(implicit trace: Trace): Gen[Any, Boolean] =
elements(false, true)
/**
* A generator whose size falls within the specified bounds.
*/
def bounded[R, A](min: Int, max: Int)(f: Int => Gen[R, A])(implicit trace: Trace): Gen[R, A] =
int(min, max).flatMap(f)
/**
* A generator of bytes. Shrinks toward '0'.
*/
def byte(implicit trace: Trace): Gen[Any, Byte] =
fromZIOSample {
nextIntBounded(Byte.MaxValue - Byte.MinValue + 1)
.map(r => (Byte.MinValue + r).toByte)
.map(Sample.shrinkIntegral(0))
}
/**
* A generator of byte values inside the specified range: [start, end]. The
* shrinker will shrink toward the lower end of the range ("smallest").
*/
def byte(min: Byte, max: Byte)(implicit trace: Trace): Gen[Any, Byte] =
int(min.toInt, max.toInt).map(_.toByte)
/**
* A generator of characters. Shrinks toward '0'.
*/
def char(implicit trace: Trace): Gen[Any, Char] =
fromZIOSample {
nextIntBounded(Char.MaxValue - Char.MinValue + 1)
.map(r => (Char.MinValue + r).toChar)
.map(Sample.shrinkIntegral(0))
}
/**
* A generator of character values inside the specified range: [start, end].
* The shrinker will shrink toward the lower end of the range ("smallest").
*/
def char(min: Char, max: Char)(implicit trace: Trace): Gen[Any, Char] =
int(min.toInt, max.toInt).map(_.toChar)
/**
* A sized generator of chunks.
*/
def chunkOf[R, A](g: Gen[R, A])(implicit trace: Trace): Gen[R, Chunk[A]] =
listOf(g).map(Chunk.fromIterable)
/**
* A sized generator of non-empty chunks.
*/
def chunkOf1[R, A](g: Gen[R, A])(implicit
trace: Trace
): Gen[R, NonEmptyChunk[A]] =
listOf1(g).map { case h :: t => NonEmptyChunk.fromIterable(h, t) }
/**
* A generator of chunks whose size falls within the specified bounds.
*/
def chunkOfBounded[R, A](min: Int, max: Int)(g: Gen[R, A])(implicit
trace: Trace
): Gen[R, Chunk[A]] =
bounded(min, max)(chunkOfN(_)(g))
/**
* A generator of chunks of the specified size.
*/
def chunkOfN[R, A](n: Int)(g: Gen[R, A])(implicit trace: Trace): Gen[R, Chunk[A]] =
listOfN(n)(g).map(Chunk.fromIterable)
/**
* Composes the specified generators to create a cartesian product of elements
* with the specified function.
*/
def collectAll[R, A](gens: Iterable[Gen[R, A]])(implicit trace: Trace): Gen[R, List[A]] =
Gen.suspend {
def loop(gens: List[Gen[R, A]], as: List[A]): Gen[R, List[A]] =
gens match {
case gen :: gens => gen.flatMap(a => loop(gens, a :: as))
case Nil => Gen.const(as.reverse)
}
loop(gens.toList, Nil)
}
/**
* Combines the specified deterministic generators to return a new
* deterministic generator that generates all of the values generated by the
* specified generators.
*/
def concatAll[R, A](gens: => Iterable[Gen[R, A]])(implicit trace: Trace): Gen[R, A] =
Gen.suspend(gens.foldLeft[Gen[R, A]](Gen.empty)(_ ++ _))
/**
* A constant generator of the specified value.
*/
def const[A](a: => A)(implicit trace: Trace): Gen[Any, A] =
Gen(ZStream.succeed(Sample.noShrink(a)))
/**
* A constant generator of the specified sample.
*/
def constSample[R, A](sample: => Sample[R, A])(implicit trace: Trace): Gen[R, A] =
fromZIOSample(ZIO.succeed(sample))
/**
* A generator of doubles. Shrinks toward '0'.
*/
def double(implicit trace: Trace): Gen[Any, Double] =
fromZIOSample(nextDouble.map(Sample.shrinkFractional(0f)))
/**
* A generator of double values inside the specified range: [start, end]. The
* shrinker will shrink toward the lower end of the range ("smallest").
*/
def double(min: Double, max: Double)(implicit trace: Trace): Gen[Any, Double] =
if (min > max)
Gen.fromZIO(ZIO.die(new IllegalArgumentException("invalid bounds")))
else
uniform.map { r =>
val n = min + r * (max - min)
if (n < max) n else Math.nextAfter(max, Double.NegativeInfinity)
}
def either[R, A, B](left: Gen[R, A], right: Gen[R, B])(implicit
trace: Trace
): Gen[R, Either[A, B]] =
oneOf(left.map(Left(_)), right.map(Right(_)))
def elements[A](as: A*)(implicit trace: Trace): Gen[Any, A] =
if (as.isEmpty) empty else int(0, as.length - 1).map(as)
def empty(implicit trace: Trace): Gen[Any, Nothing] =
Gen(ZStream.empty)
/**
* A generator of exponentially distributed doubles with mean `1`. The
* shrinker will shrink toward `0`.
*/
def exponential(implicit trace: Trace): Gen[Any, Double] =
uniform.map(n => -math.log(1 - n))
/**
* Constructs a deterministic generator that only generates the specified
* fixed values.
*/
def fromIterable[R, A](
as: Iterable[A],
shrinker: A => ZStream[R, Nothing, A] = defaultShrinker
)(implicit trace: Trace): Gen[R, A] =
Gen(ZStream.fromIterable(as).map(a => Sample.unfold(a)(a => (a, shrinker(a)))))
/**
* Constructs a generator from a function that uses randomness. The returned
* generator will not have any shrinking.
*/
final def fromRandom[A](f: Random => UIO[A])(implicit trace: Trace): Gen[Any, A] =
fromRandomSample(f(_).map(Sample.noShrink))
/**
* Constructs a generator from a function that uses randomness to produce a
* sample.
*/
final def fromRandomSample[R, A](f: Random => UIO[Sample[R, A]])(implicit
trace: Trace
): Gen[R, A] =
fromZIOSample(ZIO.randomWith(f))
/**
* Constructs a generator from an effect that constructs a value.
*/
def fromZIO[R, A](effect: URIO[R, A])(implicit trace: Trace): Gen[R, A] =
fromZIOSample(effect.map(Sample.noShrink))
/**
* Constructs a generator from an effect that constructs a sample.
*/
def fromZIOSample[R, A](effect: ZIO[R, Nothing, Sample[R, A]])(implicit trace: Trace): Gen[R, A] =
Gen(ZStream.fromZIO(effect))
/**
* A generator of floats. Shrinks toward '0'.
*/
def float(implicit trace: Trace): Gen[Any, Float] =
fromZIOSample(nextFloat.map(Sample.shrinkFractional(0f)))
/**
* A generator of hex chars(0-9,a-f,A-F).
*/
def hexChar(implicit trace: Trace): Gen[Any, Char] = weighted(
char('\u0030', '\u0039') -> 10,
char('\u0041', '\u0046') -> 6,
char('\u0061', '\u0066') -> 6
)
/**
* A generator of lower hex chars(0-9, a-f).
*/
def hexCharLower(implicit trace: Trace): Gen[Any, Char] =
weighted(
char('\u0030', '\u0039') -> 10,
char('\u0061', '\u0066') -> 6
)
/**
* A generator of upper hex chars(0-9, A-F).
*/
def hexCharUpper(implicit trace: Trace): Gen[Any, Char] =
weighted(
char('\u0030', '\u0039') -> 10,
char('\u0041', '\u0046') -> 6
)
/**
* A generator of integers. Shrinks toward '0'.
*/
def int(implicit trace: Trace): Gen[Any, Int] =
fromZIOSample(nextInt.map(Sample.shrinkIntegral(0)))
/**
* A generator of integers inside the specified range: [start, end]. The
* shrinker will shrink toward the lower end of the range ("smallest").
*/
def int(min: Int, max: Int)(implicit trace: Trace): Gen[Any, Int] =
Gen.fromZIOSample {
if (min > max) ZIO.die(new IllegalArgumentException("invalid bounds"))
else {
val effect =
if (max < Int.MaxValue) nextIntBetween(min, max + 1)
else if (min > Int.MinValue) nextIntBetween(min - 1, max).map(_ + 1)
else nextInt
effect.map(Sample.shrinkIntegral(min))
}
}
/**
* A generator of strings that can be encoded in the ISO-8859-1 character set.
*/
def iso_8859_1(implicit trace: Trace): Gen[Any, String] =
chunkOf(byte).map(chunk => new String(chunk.toArray, StandardCharsets.ISO_8859_1))
/**
* A sized generator that uses a uniform distribution of size values. A large
* number of larger sizes will be generated.
*/
def large[R, A](f: Int => Gen[R, A], min: Int = 0)(implicit
trace: Trace
): Gen[R, A] =
size.flatMap(max => int(min, max)).flatMap(f)
/**
* A sized generator of lists.
*/
def listOf[R, A](g: Gen[R, A])(implicit trace: Trace): Gen[R, List[A]] =
small(listOfN(_)(g))
/**
* A sized generator of non-empty lists.
*/
def listOf1[R, A](g: Gen[R, A])(implicit trace: Trace): Gen[R, ::[A]] =
for {
h <- g
t <- small(n => listOfN(n - 1 max 0)(g))
} yield ::(h, t)
/**
* A generator of lists whose size falls within the specified bounds.
*/
def listOfBounded[R, A](min: Int, max: Int)(g: Gen[R, A])(implicit
trace: Trace
): Gen[R, List[A]] =
bounded(min, max)(listOfN(_)(g))
/**
* A generator of lists of the specified size.
*/
def listOfN[R, A](n: Int)(g: Gen[R, A])(implicit trace: Trace): Gen[R, List[A]] =
collectAll(List.fill(n)(g))
/**
* A generator of longs. Shrinks toward '0'.
*/
def long(implicit trace: Trace): Gen[Any, Long] =
fromZIOSample(nextLong.map(Sample.shrinkIntegral(0L)))
/**
* A generator of long values in the specified range: [start, end]. The
* shrinker will shrink toward the lower end of the range ("smallest").
*/
def long(min: Long, max: Long)(implicit trace: Trace): Gen[Any, Long] =
Gen.fromZIOSample {
if (min > max) ZIO.die(new IllegalArgumentException("invalid bounds"))
else {
val effect =
if (max < Long.MaxValue) nextLongBetween(min, max + 1L)
else if (min > Long.MinValue) nextLongBetween(min - 1L, max).map(_ + 1L)
else nextLong
effect.map(Sample.shrinkIntegral(min))
}
}
/**
* A sized generator of maps.
*/
def mapOf[R, A, B](key: Gen[R, A], value: Gen[R, B])(implicit
trace: Trace
): Gen[R, Map[A, B]] =
listOf(key.zip(value)).map(_.toMap)
/**
* A sized generator of non-empty maps.
*/
def mapOf1[R, A, B](key: Gen[R, A], value: Gen[R, B])(implicit
trace: Trace
): Gen[R, Map[A, B]] =
listOf1(key.zip(value)).map(_.toMap)
/**
* A generator of maps of the specified size.
*/
def mapOfN[R, A, B](n: Int)(key: Gen[R, A], value: Gen[R, B])(implicit
trace: Trace
): Gen[R, Map[A, B]] =
setOfN(n)(key).zipWith(listOfN(n)(value))(_.zip(_).toMap)
/**
* A generator of maps whose size falls within the specified bounds.
*/
def mapOfBounded[R, A, B](min: Int, max: Int)(key: Gen[R, A], value: Gen[R, B])(implicit
trace: Trace
): Gen[R, Map[A, B]] =
mapOfN(min)(key, value).zipWith(listOfBounded(0, max - min)(key.zip(value)))(_ ++ _)
/**
* A sized generator that uses an exponential distribution of size values. The
* majority of sizes will be towards the lower end of the range but some
* larger sizes will be generated as well.
*/
def medium[R, A](f: Int => Gen[R, A], min: Int = 0)(implicit
trace: Trace
): Gen[R, A] = {
val gen = for {
max <- size
n <- exponential
} yield clamp(math.round(n * max / 10.0).toInt, min, max)
gen.reshrink(Sample.shrinkIntegral(min)).flatMap(f)
}
/**
* A constant generator of the empty value.
*/
def none(implicit trace: Trace): Gen[Any, Option[Nothing]] =
Gen.const(None)
/**
* A generator of numeric characters. Shrinks toward '0'.
*/
def numericChar(implicit trace: Trace): Gen[Any, Char] =
weighted(char(48, 57) -> 10)
/**
* A generator of optional values. Shrinks toward `None`.
*/
def option[R, A](gen: Gen[R, A])(implicit trace: Trace): Gen[R, Option[A]] =
oneOf(none, gen.map(Some(_)))
def oneOf[R, A](as: Gen[R, A]*)(implicit trace: Trace): Gen[R, A] =
if (as.isEmpty) empty else int(0, as.length - 1).flatMap(as)
/**
* Constructs a generator of partial functions from `A` to `B` given a
* generator of `B` values. Two `A` values will be considered to be equal, and
* thus will be guaranteed to generate the same `B` value or both be outside
* the partial function's domain, if they have the same `hashCode`.
*/
def partialFunction[R, A, B](gen: Gen[R, B])(implicit
trace: Trace
): Gen[R, PartialFunction[A, B]] =
partialFunctionWith(gen)(_.hashCode)
/**
* Constructs a generator of partial functions from `A` to `B` given a
* generator of `B` values and a hashing function for `A` values. Two `A`
* values will be considered to be equal, and thus will be guaranteed to
* generate the same `B` value or both be outside the partial function's
* domain, if they have have the same hash. This is useful when `A` does not
* implement `hashCode` in a way that is consistent with equality.
*/
def partialFunctionWith[R, A, B](gen: Gen[R, B])(hash: A => Int)(implicit
trace: Trace
): Gen[R, PartialFunction[A, B]] =
functionWith(option(gen))(hash).map(Function.unlift)
/**
* A generator of printable characters. Shrinks toward '!'.
*/
def printableChar(implicit trace: Trace): Gen[Any, Char] =
char(33, 126)
/**
* A sized generator of sets.
*/
def setOf[R, A](gen: Gen[R, A])(implicit trace: Trace): Gen[R, Set[A]] =
listOf(gen).map(_.toSet)
/**
* A sized generator of non-empty sets.
*/
def setOf1[R, A](gen: Gen[R, A])(implicit trace: Trace): Gen[R, Set[A]] =
listOf1(gen).map(_.toSet)
/**
* A generator of sets whose size falls within the specified bounds.
*/
def setOfBounded[R, A](min: Int, max: Int)(g: Gen[R, A])(implicit
trace: Trace
): Gen[R, Set[A]] =
setOfN(min)(g).zipWith(listOfBounded(0, max - min)(g))(_ ++ _)
/**
* A generator of sets of the specified size.
*/
def setOfN[R, A](n: Int)(gen: Gen[R, A])(implicit trace: Trace): Gen[R, Set[A]] = {
def loop(n: Int, gen: Gen[R, A], set: Set[A]): Gen[R, Set[A]] =
if (n <= 0) Gen.const(set)
else
gen.flatMap { a =>
if (set(a)) loop(n, gen, set)
else loop(n - 1, gen, set + a)
}
loop(n, gen, Set.empty)
}
/**
* A generator of shorts. Shrinks toward '0'.
*/
def short(implicit trace: Trace): Gen[Any, Short] =
fromZIOSample {
nextIntBounded(Short.MaxValue - Short.MinValue + 1)
.map(r => (Short.MinValue + r).toShort)
.map(Sample.shrinkIntegral(0))
}
/**
* A generator of short values inside the specified range: [start, end]. The
* shrinker will shrink toward the lower end of the range ("smallest").
*/
def short(min: Short, max: Short)(implicit trace: Trace): Gen[Any, Short] =
int(min.toInt, max.toInt).map(_.toShort)
def size(implicit trace: Trace): Gen[Any, Int] =
Gen.fromZIO(Sized.size)
/**
* A sized generator, whose size falls within the specified bounds.
*/
def sized[R, A](f: Int => Gen[R, A])(implicit trace: Trace): Gen[R, A] =
size.flatMap(f)
/**
* A sized generator that uses an exponential distribution of size values. The
* values generated will be strongly concentrated towards the lower end of the
* range but a few larger values will still be generated.
*/
def small[R, A](f: Int => Gen[R, A], min: Int = 0)(implicit
trace: Trace
): Gen[R, A] = {
val gen = for {
max <- size
n <- exponential
} yield clamp(math.round(n * max / 25.0).toInt, min, max)
gen.reshrink(Sample.shrinkIntegral(min)).flatMap(f)
}
def some[R, A](gen: Gen[R, A])(implicit trace: Trace): Gen[R, Option[A]] =
gen.map(Some(_))
/**
* A generator of strings. Shrinks towards the empty string.
*/
def string(implicit trace: Trace): Gen[Any, String] =
Gen.string(Gen.unicodeChar)
/**
* A sized generator of strings.
*/
def string[R](char: Gen[R, Char])(implicit trace: Trace): Gen[R, String] =
listOf(char).map(_.mkString)
/**
* A sized generator of non-empty strings.
*/
def string1[R](char: Gen[R, Char])(implicit trace: Trace): Gen[R, String] =
listOf1(char).map(_.mkString)
/**
* A generator of strings whose size falls within the specified bounds.
*/
def stringBounded[R](min: Int, max: Int)(g: Gen[R, Char])(implicit
trace: Trace
): Gen[R, String] =
bounded(min, max)(stringN(_)(g))
/**
* A generator of strings of the specified size.
*/
def stringN[R](n: Int)(char: Gen[R, Char])(implicit trace: Trace): Gen[R, String] =
listOfN(n)(char).map(_.mkString)
/**
* Lazily constructs a generator. This is useful to avoid infinite recursion
* when creating generators that refer to themselves.
*/
def suspend[R, A](gen: => Gen[R, A])(implicit trace: Trace): Gen[R, A] =
fromZIO(ZIO.succeed(gen)).flatten
/**
* A generator of throwables.
*/
def throwable(implicit trace: Trace): Gen[Any, Throwable] =
Gen.const(new Throwable)
/**
* A sized generator of collections, where each collection is generated by
* repeatedly applying a function to an initial state.
*/
def unfoldGen[R, S, A](s: S)(f: S => Gen[R, (S, A)])(implicit
trace: Trace
): Gen[R, List[A]] =
small(unfoldGenN(_)(s)(f))
/**
* A generator of collections of up to the specified size, where each
* collection is generated by repeatedly applying a function to an initial
* state.
*/
def unfoldGenN[R, S, A](n: Int)(s: S)(f: S => Gen[R, (S, A)])(implicit trace: Trace): Gen[R, List[A]] =
if (n <= 0)
Gen.const(List.empty)
else
f(s).flatMap { case (s, a) => unfoldGenN(n - 1)(s)(f).map(a :: _) }
/**
* A generator of Unicode characters. Shrinks toward '0'.
*/
def unicodeChar(implicit trace: Trace): Gen[Any, Char] =
Gen.oneOf(Gen.char('\u0000', '\uD7FF'), Gen.char('\uE000', '\uFFFD'))
/**
* A generator of uniformly distributed doubles between [0, 1]. The shrinker
* will shrink toward `0`.
*/
def uniform(implicit trace: Trace): Gen[Any, Double] =
fromZIOSample(nextDouble.map(Sample.shrinkFractional(0.0)))
/**
* A constant generator of the unit value.
*/
def unit(implicit trace: Trace): Gen[Any, Unit] =
const(())
/**
* A generator of universally unique identifiers. The returned generator will
* not have any shrinking.
*/
def uuid(implicit trace: Trace): Gen[Any, UUID] =
Gen.fromZIO(nextUUID)
/**
* A sized generator of vectors.
*/
def vectorOf[R, A](g: Gen[R, A])(implicit trace: Trace): Gen[R, Vector[A]] =
listOf(g).map(_.toVector)
/**
* A sized generator of non-empty vectors.
*/
def vectorOf1[R, A](g: Gen[R, A])(implicit trace: Trace): Gen[R, Vector[A]] =
listOf1(g).map(_.toVector)
/**
* A generator of vectors whose size falls within the specified bounds.
*/
def vectorOfBounded[R, A](min: Int, max: Int)(g: Gen[R, A])(implicit
trace: Trace
): Gen[R, Vector[A]] =
bounded(min, max)(vectorOfN(_)(g))
/**
* A generator of vectors of the specified size.
*/
def vectorOfN[R, A](n: Int)(g: Gen[R, A])(implicit trace: Trace): Gen[R, Vector[A]] =
listOfN(n)(g).map(_.toVector)
/**
* A generator which chooses one of the given generators according to their
* weights. For example, the following generator will generate 90% true and
* 10% false values.
* {{{
* val trueFalse = Gen.weighted((Gen.const(true), 9), (Gen.const(false), 1))
* }}}
*/
def weighted[R, A](gs: (Gen[R, A], Double)*)(implicit trace: Trace): Gen[R, A] = {
val sum = gs.map(_._2).sum
val (map, _) = gs.foldLeft((SortedMap.empty[Double, Gen[R, A]], 0.0)) { case ((map, acc), (gen, d)) =>
if ((acc + d) / sum > acc / sum) (map.updated((acc + d) / sum, gen), acc + d)
else (map, acc)
}
uniform.flatMap(n => map.rangeImpl(Some(n), None).head._2)
}
/**
* A generator of whitespace characters.
*/
def whitespaceChars(implicit trace: Trace): Gen[Any, Char] =
Gen.elements((Char.MinValue to Char.MaxValue).filter(_.isWhitespace): _*)
/**
* Restricts an integer to the specified range.
*/
private def clamp(n: Int, min: Int, max: Int): Int =
if (n < min) min
else if (n > max) max
else n
private val defaultShrinker: Any => ZStream[Any, Nothing, Nothing] =
_ => ZStream.empty(Trace.empty)
}