zio.test.laws.ZLawsF.scala Maven / Gradle / Ivy
/*
* Copyright 2020-2024 John A. De Goes and the ZIO Contributors
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package zio.test.laws
import zio.stacktracer.TracingImplicits.disableAutoTrace
import zio.test.{Gen, TestResult, check}
import zio.{URIO, ZIO, Trace}
/**
* `ZLaws[CapsF, Caps, R]` describes a set of laws that a parameterized type
* `F[A]` with capabilities `CapsF` is expected to satisfy with respect to all
* types `A` that have capabilities `Caps`. Laws can be run by providing a
* `GenF` that is capable of generating `F[A]` values given a generator of `A`
* values and a generator of values of some type `A`. Laws can be combined using
* `+` to produce a set of laws that require both sets of laws to be satisfied.
*/
object ZLawsF {
/**
* `ZLawsF` for covariant type constructors.
*/
abstract class Covariant[-CapsF[_[+_]], -Caps[_], -R] { self =>
/**
* Test that values of type `F[+_]` satisfy the laws using the specified
* function to construct a generator of `F[A]` values given a generator of
* `A` values.
*/
def run[R1 <: R, F[+_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult]
/**
* Combine these laws with the specified laws to produce a set of laws that
* require both sets of laws to be satisfied.
*/
def +[CapsF1[x[+_]] <: CapsF[x], Caps1[x] <: Caps[x], R1 <: R](
that: Covariant[CapsF1, Caps1, R1]
): Covariant[CapsF1, Caps1, R1] =
Covariant.Both(self, that)
}
object Covariant {
private final case class Both[-CapsF[_[+_]], -Caps[_], -R](
left: Covariant[CapsF, Caps, R],
right: Covariant[CapsF, Caps, R]
) extends Covariant[CapsF, Caps, R] {
final def run[R1 <: R, F[+_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
left.run(genF, gen).zipWith(right.run(genF, gen))(_ && _)
}
/**
* Constructs a law from a pure function taking one parameterized value and
* two functions that can be composed.
*/
abstract class ComposeLaw[-CapsF[_[+_]], -Caps[_]](label: String) extends Covariant[CapsF, Caps, Any] { self =>
def apply[F[+_]: CapsF, A: Caps, B: Caps, C: Caps](fa: F[A], f: A => B, g: B => C): TestResult
final def run[R, F[+_]: CapsF, A: Caps](
genF: GenF[R, F],
gen: Gen[R, A]
)(implicit trace: Trace): URIO[R, TestResult] =
check(genF(gen), Gen.function(gen), Gen.function(gen))(apply(_, _, _).label(label))
}
/**
* Constructs a law from a parameterized value wrapped in two additional
* layers that can be flattened.
*/
abstract class FlattenLaw[-CapsF[_[+_]], -Caps[_]](label: String) extends Covariant[CapsF, Caps, Any] { self =>
def apply[F[+_]: CapsF, A: Caps](fffa: F[F[F[A]]]): TestResult
final def run[R, F[+_]: CapsF, A: Caps](
genF: GenF[R, F],
gen: Gen[R, A]
)(implicit trace: Trace): URIO[R, TestResult] =
check(genF(genF(genF(gen))))(apply(_).label(label))
}
/**
* Constructs a law from a pure function taking a single parameter.
*/
abstract class Law1[-CapsF[_[+_]], -Caps[_]](label: String) extends Covariant[CapsF, Caps, Any] { self =>
def apply[F[+_]: CapsF, A: Caps](fa: F[A]): TestResult
final def run[R, F[+_]: CapsF, A: Caps](
genF: GenF[R, F],
gen: Gen[R, A]
)(implicit trace: Trace): URIO[R, TestResult] =
check(genF(gen))(apply(_).label(label))
}
/**
* Constructs a law from an effectual function taking a single parameter.
*/
abstract class Law1ZIO[-CapsF[_[+_]], -Caps[_], -R](label: String) extends Covariant[CapsF, Caps, R] { self =>
def apply[F[+_]: CapsF, A: Caps](fa: F[A]): URIO[R, TestResult]
final def run[R1 <: R, F[+_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
check(genF(gen))(apply(_).map(_.label(label)))
}
/**
* Constructs a law from a pure function taking two parameters.
*/
abstract class Law2[-CapsF[_[+_]], -Caps[_]](label: String) extends Covariant[CapsF, Caps, Any] { self =>
def apply[F[+_]: CapsF, A: Caps, B: Caps](fa: F[A], fb: F[B]): TestResult
final def run[R, F[+_]: CapsF, A: Caps](
genF: GenF[R, F],
gen: Gen[R, A]
)(implicit trace: Trace): URIO[R, TestResult] =
check(genF(gen), genF(gen))(apply(_, _).label(label))
}
/**
* Constructs a law from an effectual function taking two parameters.
*/
abstract class Law2ZIO[-CapsF[_[+_]], -Caps[_], -R](label: String) extends Covariant[CapsF, Caps, R] { self =>
def apply[F[+_]: CapsF, A: Caps, B: Caps](fa: F[A], fb: F[B]): URIO[R, TestResult]
final def run[R1 <: R, F[+_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
check(genF(gen), genF(gen))(apply(_, _).map(_.label(label)))
}
/**
* Constructs a law from a pure function taking three parameters.
*/
abstract class Law3[-CapsF[_[+_]], -Caps[_]](label: String) extends Covariant[CapsF, Caps, Any] { self =>
def apply[F[+_]: CapsF, A: Caps, B: Caps, C: Caps](fa: F[A], fb: F[B], fc: F[C]): TestResult
final def run[R, F[+_]: CapsF, A: Caps](
genF: GenF[R, F],
gen: Gen[R, A]
)(implicit trace: Trace): URIO[R, TestResult] =
check(genF(gen), genF(gen), genF(gen))(apply(_, _, _).label(label))
}
/**
* Constructs a law from an effectual function taking three parameters.
*/
abstract class Law3ZIO[-CapsF[_[+_]], -Caps[_], -R](label: String) extends Covariant[CapsF, Caps, R] { self =>
def apply[F[+_]: CapsF, A: Caps, B: Caps, C: Caps](fa: F[A], fb: F[B], fc: F[C]): URIO[R, TestResult]
final def run[R1 <: R, F[+_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
check(genF(gen), genF(gen), genF(gen))(apply(_, _, _).map(_.label(label)))
}
}
/**
* `ZLawsF` for contravariant type constructors.
*/
abstract class Contravariant[-CapsF[_[-_]], -Caps[_], -R] { self =>
/**
* Test that values of type `F[+_]` satisfy the laws using the specified
* function to construct a generator of `F[A]` values given a generator of
* `A` values.
*/
def run[R1 <: R, F[-_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult]
/**
* Combine these laws with the specified laws to produce a set of laws that
* require both sets of laws to be satisfied.
*/
def +[CapsF1[x[-_]] <: CapsF[x], Caps1[x] <: Caps[x], R1 <: R](
that: Contravariant[CapsF1, Caps1, R1]
): Contravariant[CapsF1, Caps1, R1] =
Contravariant.Both(self, that)
}
object Contravariant {
private final case class Both[-CapsF[_[-_]], -Caps[_], -R](
left: Contravariant[CapsF, Caps, R],
right: Contravariant[CapsF, Caps, R]
) extends Contravariant[CapsF, Caps, R] {
final def run[R1 <: R, F[-_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
left.run(genF, gen).zipWith(right.run(genF, gen))(_ && _)
}
/**
* Constructs a law from a pure function taking one parameterized value and
* two functions that can be composed.
*/
abstract class ComposeLaw[-CapsF[_[-_]], -Caps[_]](label: String) extends Contravariant[CapsF, Caps, Any] {
self =>
def apply[F[-_]: CapsF, A: Caps, B: Caps, C: Caps](fa: F[A], f: B => A, g: C => B): TestResult
final def run[R, F[-_]: CapsF, A: Caps](
genF: GenF[R, F],
gen: Gen[R, A]
)(implicit trace: Trace): URIO[R, TestResult] =
check(genF(gen), Gen.function[R, A, A](gen), Gen.function[R, A, A](gen))(apply(_, _, _).label(label))
}
/**
* Constructs a law from a pure function taking a single parameter.
*/
abstract class Law1[-CapsF[_[-_]], -Caps[_]](label: String) extends Contravariant[CapsF, Caps, Any] { self =>
def apply[F[-_]: CapsF, A: Caps](fa: F[A]): TestResult
final def run[R, F[-_]: CapsF, A: Caps](
genF: GenF[R, F],
gen: Gen[R, A]
)(implicit trace: Trace): URIO[R, TestResult] =
check(genF(gen))(apply(_).label(label))
}
/**
* Constructs a law from an effectual function taking a single parameter.
*/
abstract class Law1ZIO[-CapsF[_[-_]], -Caps[_], -R](label: String) extends Contravariant[CapsF, Caps, R] { self =>
def apply[F[-_]: CapsF, A: Caps](fa: F[A]): URIO[R, TestResult]
final def run[R1 <: R, F[-_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
check(genF(gen))(apply(_).map(_.label(label)))
}
/**
* Constructs a law from a pure function taking two parameters.
*/
abstract class Law2[-CapsF[_[-_]], -Caps[_]](label: String) extends Contravariant[CapsF, Caps, Any] { self =>
def apply[F[-_]: CapsF, A: Caps, B: Caps](fa: F[A], fb: F[B]): TestResult
final def run[R, F[-_]: CapsF, A: Caps](
genF: GenF[R, F],
gen: Gen[R, A]
)(implicit trace: Trace): URIO[R, TestResult] =
check(genF(gen), genF(gen))(apply(_, _).label(label))
}
/**
* Constructs a law from an effectual function taking two parameters.
*/
abstract class Law2ZIO[-CapsF[_[-_]], -Caps[_], -R](label: String) extends Contravariant[CapsF, Caps, R] { self =>
def apply[F[-_]: CapsF, A: Caps, B: Caps](fa: F[A], fb: F[B]): URIO[R, TestResult]
final def run[R1 <: R, F[-_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
check(genF(gen), genF(gen))(apply(_, _).map(_.label(label)))
}
/**
* Constructs a law from a pure function taking three parameters.
*/
abstract class Law3[-CapsF[_[-_]], -Caps[_]](label: String) extends Contravariant[CapsF, Caps, Any] { self =>
def apply[F[-_]: CapsF, A: Caps, B: Caps, C: Caps](fa: F[A], fb: F[B], fc: F[C]): TestResult
final def run[R, F[-_]: CapsF, A: Caps](
genF: GenF[R, F],
gen: Gen[R, A]
)(implicit trace: Trace): URIO[R, TestResult] =
check(genF(gen), genF(gen), genF(gen))(apply(_, _, _).label(label))
}
/**
* Constructs a law from an effectual function taking three parameters.
*/
abstract class Law3ZIO[-CapsF[_[-_]], -Caps[_], -R](label: String) extends Contravariant[CapsF, Caps, R] { self =>
def apply[F[-_]: CapsF, A: Caps, B: Caps, C: Caps](fa: F[A], fb: F[B], fc: F[C]): URIO[R, TestResult]
final def run[R1 <: R, F[-_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
check(genF(gen), genF(gen), genF(gen))(apply(_, _, _).map(_.label(label)))
}
}
/**
* `ZLawsF` for invariant type constructors.
*/
abstract class Invariant[-CapsF[_[_]], -Caps[_], -R] { self =>
/**
* Test that values of type `F[+_]` satisfy the laws using the specified
* function to construct a generator of `F[A]` values given a generator of
* `A` values.
*/
def run[R1 <: R, F[_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult]
/**
* Combine these laws with the specified laws to produce a set of laws that
* require both sets of laws to be satisfied.
*/
def +[CapsF1[x[_]] <: CapsF[x], Caps1[x] <: Caps[x], R1 <: R](
that: Invariant[CapsF1, Caps1, R1]
): Invariant[CapsF1, Caps1, R1] =
Invariant.Both(self, that)
}
object Invariant {
private final case class Both[-CapsF[_[_]], -Caps[_], -R](
left: Invariant[CapsF, Caps, R],
right: Invariant[CapsF, Caps, R]
) extends Invariant[CapsF, Caps, R] {
final def run[R1 <: R, F[_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
left.run(genF, gen).zipWith(right.run(genF, gen))(_ && _)
}
/**
* Constructs a law from a pure function taking a single parameter.
*/
abstract class Law1[-CapsF[_[_]], -Caps[_]](label: String) extends Invariant[CapsF, Caps, Any] { self =>
def apply[F[_]: CapsF, A: Caps](fa: F[A]): TestResult
final def run[R, F[_]: CapsF, A: Caps](genF: GenF[R, F], gen: Gen[R, A])(implicit
trace: Trace
): URIO[R, TestResult] =
check(genF(gen))(apply(_).label(label))
}
/**
* Constructs a law from an effectual function taking a single parameter.
*/
abstract class Law1ZIO[-CapsF[_[_]], -Caps[_], -R](label: String) extends Invariant[CapsF, Caps, R] { self =>
def apply[F[_]: CapsF, A: Caps](fa: F[A]): URIO[R, TestResult]
final def run[R1 <: R, F[_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
check(genF(gen))(apply(_).map(_.label(label)))
}
/**
* Constructs a law from a pure function taking two parameters.
*/
abstract class Law2[-CapsF[_[_]], -Caps[_]](label: String) extends Invariant[CapsF, Caps, Any] { self =>
def apply[F[_]: CapsF, A: Caps, B: Caps](fa: F[A], fb: F[B]): TestResult
final def run[R, F[_]: CapsF, A: Caps](genF: GenF[R, F], gen: Gen[R, A])(implicit
trace: Trace
): URIO[R, TestResult] =
check(genF(gen), genF(gen))(apply(_, _).label(label))
}
/**
* Constructs a law from an effectual function taking two parameters.
*/
abstract class Law2ZIO[-CapsF[_[_]], -Caps[_], -R](label: String) extends Invariant[CapsF, Caps, R] { self =>
def apply[F[_]: CapsF, A: Caps, B: Caps](fa: F[A], fb: F[B]): URIO[R, TestResult]
final def run[R1 <: R, F[_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
check(genF(gen), genF(gen))(apply(_, _).map(_.label(label)))
}
/**
* Constructs a law from a pure function taking three parameters.
*/
abstract class Law3[-CapsF[_[_]], -Caps[_]](label: String) extends Invariant[CapsF, Caps, Any] { self =>
def apply[F[_]: CapsF, A: Caps, B: Caps, C: Caps](fa: F[A], fb: F[B], fc: F[C]): TestResult
final def run[R, F[_]: CapsF, A: Caps](genF: GenF[R, F], gen: Gen[R, A])(implicit
trace: Trace
): URIO[R, TestResult] =
check(genF(gen), genF(gen), genF(gen))(apply(_, _, _).label(label))
}
/**
* Constructs a law from an effectual function taking three parameters.
*/
abstract class Law3ZIO[-CapsF[_[_]], -Caps[_], -R](label: String) extends Invariant[CapsF, Caps, R] { self =>
def apply[F[_]: CapsF, A: Caps, B: Caps, C: Caps](fa: F[A], fb: F[B], fc: F[C]): URIO[R, TestResult]
final def run[R1 <: R, F[_]: CapsF, A: Caps](
genF: GenF[R1, F],
gen: Gen[R1, A]
)(implicit trace: Trace): ZIO[R1, Nothing, TestResult] =
check(genF(gen), genF(gen), genF(gen))(apply(_, _, _).map(_.label(label)))
}
}
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy