commonMain.earth.worldwind.geom.Matrix3.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of worldwind-jvm Show documentation
Show all versions of worldwind-jvm Show documentation
The WorldWind Kotlin SDK (WWK) includes the library, examples and tutorials for building multiplatform 3D virtual globe applications for Android, Web and Java.
The newest version!
package earth.worldwind.geom
import earth.worldwind.util.Logger.ERROR
import earth.worldwind.util.Logger.logMessage
import kotlin.math.cos
import kotlin.math.sin
/**
* 3 x 3 matrix in row-major order.
*/
open class Matrix3 private constructor(
/**
* The matrix's components, stored in row-major order.
*/
val m: DoubleArray
){
companion object {
/**
* The components for the 3 x 3 identity matrix, stored in row-major order.
*/
internal val identity = doubleArrayOf(
1.0, 0.0, 0.0,
0.0, 1.0, 0.0,
0.0, 0.0, 1.0
)
}
/**
* Constructs a 3 x 3 identity matrix.
*/
constructor(): this(identity.copyOf())
/**
* Constructs a 3 x 3 matrix with specified components.
*
* @param m11 matrix element at row 1, column 1
* @param m12 matrix element at row 1, column 2
* @param m13 matrix element at row 1, column 3
* @param m21 matrix element at row 2, column 1
* @param m22 matrix element at row 2, column 2
* @param m23 matrix element at row 2, column 3
* @param m31 matrix element at row 3, column 1
* @param m32 matrix element at row 3, column 2
* @param m33 matrix element at row 3, column 3
*/
constructor(
m11: Double, m12: Double, m13: Double,
m21: Double, m22: Double, m23: Double,
m31: Double, m32: Double, m33: Double
): this(doubleArrayOf(m11, m12, m13, m21, m22, m23, m31, m32, m33))
/**
* Constructs a 3 x 3 matrix with the components of a specified matrix.
*
* @param matrix the matrix specifying the new components
*/
constructor(matrix: Matrix3): this(matrix.m.copyOf())
/**
* Sets this 3 x 3 matrix to specified components.
*
* @param m11 matrix element at row 1, column 1
* @param m12 matrix element at row 1, column 2
* @param m13 matrix element at row 1, column 3
* @param m21 matrix element at row 2, column 1
* @param m22 matrix element at row 2, column 2
* @param m23 matrix element at row 2, column 3
* @param m31 matrix element at row 3, column 1
* @param m32 matrix element at row 3, column 2
* @param m33 matrix element at row 3, column 3
*
* @return this matrix set to the specified components
*/
fun set(
m11: Double, m12: Double, m13: Double,
m21: Double, m22: Double, m23: Double,
m31: Double, m32: Double, m33: Double
) = apply {
m[0] = m11
m[1] = m12
m[2] = m13
m[3] = m21
m[4] = m22
m[5] = m23
m[6] = m31
m[7] = m32
m[8] = m33
}
/**
* Sets this 3 x 3 matrix to the components of a specified matrix.
*
* @param matrix the matrix specifying the new components
*
* @return this matrix with its components set to that of the specified matrix
*/
fun copy(matrix: Matrix3) = apply { matrix.m.copyInto(m) }
/**
* Sets the translation components of this matrix to specified values.
*
* @param x the X translation component
* @param y the Y translation component
*
* @return this matrix with its translation components set to the specified values and all other components
* unmodified
*/
fun setTranslation(x: Double, y: Double) = apply {
m[2] = x
m[5] = y
}
/**
* Sets the rotation components of this matrix to a specified angle. Positive angles are interpreted as
* counter-clockwise rotation.
*
* @param angle the angle of rotation
*
* @return this matrix with its rotation components set to the specified values and all other components unmodified
*/
fun setRotation(angle: Angle) = apply {
val c = cos(angle.inRadians)
val s = sin(angle.inRadians)
m[0] = c
m[1] = -s
m[3] = s
m[4] = c
}
/**
* Sets the scale components of this matrix to specified values.
*
* @param xScale the X scale component
* @param yScale the Y scale component
*
* @return this matrix with its scale components set to the specified values and all other components unmodified
*/
fun setScale(xScale: Double, yScale: Double) = apply {
m[0] = xScale
m[4] = yScale
}
/**
* Sets this matrix to the 3 x 3 identity matrix.
*
* @return this matrix, set to the identity matrix
*/
fun setToIdentity() = apply { identity.copyInto(m) }
/**
* Sets this matrix to a translation matrix with specified translation components.
*
* @param x the X translation component
* @param y the Y translation component
*
* @return this matrix with its translation components set to those specified and all other components set to that
* of an identity matrix
*/
fun setToTranslation(x: Double, y: Double) = apply {
m[0] = 1.0
m[1] = 0.0
m[2] = x
m[3] = 0.0
m[4] = 1.0
m[5] = y
m[6] = 0.0
m[7] = 0.0
m[8] = 1.0
}
/**
* Sets this matrix to a rotation matrix with a specified angle. Positive angles are interpreted as
* counter-clockwise rotation.
*
* @param angle the angle of rotation
*
* @return this matrix with its rotation components set to those specified and all other components set to that of
* an identity matrix
*/
fun setToRotation(angle: Angle) = apply {
val c = cos(angle.inRadians)
val s = sin(angle.inRadians)
m[0] = c
m[1] = -s
m[2] = 0.0
m[3] = s
m[4] = c
m[5] = 0.0
m[6] = 0.0
m[7] = 0.0
m[8] = 1.0
}
/**
* Sets this matrix to a scale matrix with specified scale components.
*
* @param xScale the X scale component
* @param yScale the Y scale component
*
* @return this matrix with its scale components set to those specified and all other components set to that of an
* identity matrix
*/
fun setToScale(xScale: Double, yScale: Double) = apply {
m[0] = xScale
m[1] = 0.0
m[2] = 0.0
m[3] = 0.0
m[4] = yScale
m[5] = 0.0
m[6] = 0.0
m[7] = 0.0
m[8] = 1.0
}
/**
* Sets this matrix to one that flips and shifts the y-axis. The resultant matrix maps Y=0 to Y=1 and Y=1 to Y=0.
* All existing values are overwritten. This matrix is usually used to change the coordinate origin from an upper
* left coordinate origin to a lower left coordinate origin.
*
* This matrix is typically necessary to align the coordinate system of images (top-left origin) with that of OpenGL
* (bottom-left origin).
*
* @return this matrix set to values described above
*/
fun setToVerticalFlip() = apply {
m[0] = 1.0
m[1] = 0.0
m[2] = 0.0
m[3] = 0.0
m[4] = -1.0
m[5] = 1.0
m[6] = 0.0
m[7] = 0.0
m[8] = 1.0
}
/**
* Sets this matrix to one that transforms normalized coordinates from a source sector to a destination sector.
* Normalized coordinates within a sector range from 0 to 1, with (0, 0) indicating the lower left corner and (1, 1)
* indicating the upper right. The resultant matrix maps a normalized source coordinate (X, Y) to its corresponding
* normalized destination coordinate (X', Y').
*
* This matrix typically necessary to transform texture coordinates from one geographic region to another. For
* example, the texture coordinates for a terrain tile spanning one region must be transformed to coordinates
* appropriate for an image tile spanning a potentially different region.
*
* @param src the source sector
* @param dst the destination sector
*
* @return this matrix set to values described above
*/
fun setToTileTransform(src: Sector, dst: Sector) = apply {
val srcDeltaLat = src.deltaLatitude.inDegrees
val srcDeltaLon = src.deltaLongitude.inDegrees
val dstDeltaLat = dst.deltaLatitude.inDegrees
val dstDeltaLon = dst.deltaLongitude.inDegrees
val xs = srcDeltaLon / dstDeltaLon
val ys = srcDeltaLat / dstDeltaLat
val xt = (src.minLongitude.inDegrees - dst.minLongitude.inDegrees) / dstDeltaLon
val yt = (src.minLatitude.inDegrees - dst.minLatitude.inDegrees) / dstDeltaLat
m[0] = xs
m[1] = 0.0
m[2] = xt
m[3] = 0.0
m[4] = ys
m[5] = yt
m[6] = 0.0
m[7] = 0.0
m[8] = 1.0
}
/**
* Sets this matrix to the matrix product of two specified matrices.
*
* @param a the first matrix multiplicand
* @param b The second matrix multiplicand
*
* @return this matrix set to the product of a x b
*/
fun setToMultiply(a: Matrix3, b: Matrix3) = apply {
val ma = a.m
val mb = b.m
m[0] = ma[0] * mb[0] + ma[1] * mb[3] + ma[2] * mb[6]
m[1] = ma[0] * mb[1] + ma[1] * mb[4] + ma[2] * mb[7]
m[2] = ma[0] * mb[2] + ma[1] * mb[5] + ma[2] * mb[8]
m[3] = ma[3] * mb[0] + ma[4] * mb[3] + ma[5] * mb[6]
m[4] = ma[3] * mb[1] + ma[4] * mb[4] + ma[5] * mb[7]
m[5] = ma[3] * mb[2] + ma[4] * mb[5] + ma[5] * mb[8]
m[6] = ma[6] * mb[0] + ma[7] * mb[3] + ma[8] * mb[6]
m[7] = ma[6] * mb[1] + ma[7] * mb[4] + ma[8] * mb[7]
m[8] = ma[6] * mb[2] + ma[7] * mb[5] + ma[8] * mb[8]
}
/**
* Multiplies this matrix by a translation matrix with specified translation values.
*
* @param x the X translation component
* @param y the Y translation component
*
* @return this matrix multiplied by the translation matrix implied by the specified values
*/
fun multiplyByTranslation(x: Double, y: Double) = apply {
multiplyByMatrix(1.0, 0.0, x, 0.0, 1.0, y, 0.0, 0.0, 1.0)
}
/**
* Multiplies this matrix by a rotation matrix about a specified axis and angle. Positive angles are interpreted as
* counter-clockwise rotation.
*
* @param angle the angle of rotation
*
* @return this matrix multiplied by the rotation matrix implied by the specified values
*/
fun multiplyByRotation(angle: Angle) = apply {
val c = cos(angle.inRadians)
val s = sin(angle.inRadians)
multiplyByMatrix(c, -s, 0.0, s, c, 0.0, 0.0, 0.0, 1.0)
}
/**
* Multiplies this matrix by a scale matrix with specified values.
*
* @param xScale the X scale component
* @param yScale the Y scale component
*
* @return this matrix multiplied by the scale matrix implied by the specified values
*/
fun multiplyByScale(xScale: Double, yScale: Double) = apply {
multiplyByMatrix(xScale, 0.0, 0.0, 0.0, yScale, 0.0, 0.0, 0.0, 1.0)
}
/**
* Multiplies this matrix by a matrix that flips and shifts the y-axis. The vertical flip matrix maps Y=0 to Y=1 and
* Y=1 to Y=0. This matrix is usually used to change the coordinate origin from an upper left coordinate origin to a
* lower left coordinate origin.
*
* This is typically necessary to align the coordinate system of images (top-left origin) with that of OpenGL
* (bottom-left origin).
*
* @return this matrix multiplied by a vertical flip matrix implied by values described above
*/
fun multiplyByVerticalFlip() = apply {
m[2] += m[1]
m[5] += m[4]
m[8] += m[7]
m[1] = -m[1]
m[4] = -m[4]
m[7] = -m[7]
}
/**
* Multiplies this matrix by a matrix that transforms normalized coordinates from a source sector to a destination
* sector. Normalized coordinates within a sector range from 0 to 1, with (0, 0) indicating the lower left corner
* and (1, 1) indicating the upper right. The resultant matrix maps a normalized source coordinate (X, Y) to its
* corresponding normalized destination coordinate (X', Y').
*
* This matrix typically necessary to transform texture coordinates from one geographic region to another. For
* example, the texture coordinates for a terrain tile spanning one region must be transformed to coordinates
* appropriate for an image tile spanning a potentially different region.
*
* @param src the source sector
* @param dst the destination sector
*
* @return this matrix multiplied by the transform matrix implied by values described above
*/
fun multiplyByTileTransform(src: Sector, dst: Sector) = apply {
val srcDeltaLat = src.deltaLatitude.inDegrees
val srcDeltaLon = src.deltaLongitude.inDegrees
val dstDeltaLat = dst.deltaLatitude.inDegrees
val dstDeltaLon = dst.deltaLongitude.inDegrees
val xs = srcDeltaLon / dstDeltaLon
val ys = srcDeltaLat / dstDeltaLat
val xt = (src.minLongitude.inDegrees - dst.minLongitude.inDegrees) / dstDeltaLon
val yt = (src.minLatitude.inDegrees - dst.minLatitude.inDegrees) / dstDeltaLat
m[2] += m[0] * xt + m[1] * yt
m[5] += m[3] * xt + m[4] * yt
m[8] += m[6] * xt + m[6] * yt
m[0] *= xs
m[1] *= ys
m[3] *= xs
m[4] *= ys
m[6] *= xs
m[7] *= ys
}
/**
* Multiplies this matrix by a specified matrix.
*
* @param matrix the matrix to multiply with this matrix
*
* @return this matrix after multiplying it by the specified matrix
*/
fun multiplyByMatrix(matrix: Matrix3) = apply {
val ma = m
val mb = matrix.m
var ma0 = ma[0]
var ma1 = ma[1]
var ma2 = ma[2]
ma[0] = ma0 * mb[0] + ma1 * mb[3] + ma2 * mb[6]
ma[1] = ma0 * mb[1] + ma1 * mb[4] + ma2 * mb[7]
ma[2] = ma0 * mb[2] + ma1 * mb[5] + ma2 * mb[8]
ma0 = ma[3]
ma1 = ma[4]
ma2 = ma[5]
ma[3] = ma0 * mb[0] + ma1 * mb[3] + ma2 * mb[6]
ma[4] = ma0 * mb[1] + ma1 * mb[4] + ma2 * mb[7]
ma[5] = ma0 * mb[2] + ma1 * mb[5] + ma2 * mb[8]
ma0 = ma[6]
ma1 = ma[7]
ma2 = ma[8]
ma[6] = ma0 * mb[0] + ma1 * mb[3] + ma2 * mb[6]
ma[7] = ma0 * mb[1] + ma1 * mb[4] + ma2 * mb[7]
ma[8] = ma0 * mb[2] + ma1 * mb[5] + ma2 * mb[8]
}
/**
* Multiplies this matrix by a matrix specified by individual components.
*
* @param m11 matrix element at row 1, column 1
* @param m12 matrix element at row 1, column 2
* @param m13 matrix element at row 1, column 3
* @param m21 matrix element at row 2, column 1
* @param m22 matrix element at row 2, column 2
* @param m23 matrix element at row 2, column 3
* @param m31 matrix element at row 3, column 1
* @param m32 matrix element at row 3, column 2
* @param m33 matrix element at row 3, column 3
*
* @return this matrix with its components multiplied by the specified values
*/
fun multiplyByMatrix(
m11: Double, m12: Double, m13: Double,
m21: Double, m22: Double, m23: Double,
m31: Double, m32: Double, m33: Double
) = apply {
var mr1 = m[0]
var mr2 = m[1]
var mr3 = m[2]
m[0] = mr1 * m11 + mr2 * m21 + mr3 * m31
m[1] = mr1 * m12 + mr2 * m22 + mr3 * m32
m[2] = mr1 * m13 + mr2 * m23 + mr3 * m33
mr1 = m[3]
mr2 = m[4]
mr3 = m[5]
m[3] = mr1 * m11 + mr2 * m21 + mr3 * m31
m[4] = mr1 * m12 + mr2 * m22 + mr3 * m32
m[5] = mr1 * m13 + mr2 * m23 + mr3 * m33
mr1 = m[6]
mr2 = m[7]
mr3 = m[8]
m[6] = mr1 * m11 + mr2 * m21 + mr3 * m31
m[7] = mr1 * m12 + mr2 * m22 + mr3 * m32
m[8] = mr1 * m13 + mr2 * m23 + mr3 * m33
}
/**
* Transposes this matrix in place.
*
* @return this matrix, transposed.
*/
fun transpose() = apply {
var tmp = m[1]
m[1] = m[3]
m[3] = tmp
tmp = m[2]
m[2] = m[6]
m[6] = tmp
tmp = m[5]
m[5] = m[7]
m[7] = tmp
}
/**
* Transposes the specified matrix and stores the result in this matrix.
*
* @param matrix the matrix whose transpose is computed
*
* @return this matrix set to the transpose of the specified matrix
*/
fun transposeMatrix(matrix: Matrix3) = apply {
m[0] = matrix.m[0]
m[1] = matrix.m[3]
m[2] = matrix.m[6]
m[3] = matrix.m[1]
m[4] = matrix.m[4]
m[5] = matrix.m[7]
m[6] = matrix.m[2]
m[7] = matrix.m[5]
m[8] = matrix.m[8]
}
/**
* Transposes this matrix, storing the result in the specified single precision array. The result is compatible with
* GLSL uniform matrices, and can be passed to the function glUniformMatrix3fv.
*
* @param result a pre-allocated array of length 9 in which to return the transposed components
*
* @return the result argument set to the transposed components
*/
fun transposeToArray(result: FloatArray, offset: Int): FloatArray {
var o = offset
require(result.size - o >= 9) {
logMessage(ERROR, "Matrix4", "transposeToArray", "missingArray")
}
result[o++] = m[0].toFloat()
result[o++] = m[3].toFloat()
result[o++] = m[6].toFloat()
result[o++] = m[1].toFloat()
result[o++] = m[4].toFloat()
result[o++] = m[7].toFloat()
result[o++] = m[2].toFloat()
result[o++] = m[5].toFloat()
result[o] = m[8].toFloat()
return result
}
/**
* Inverts this matrix in place.
*
* This throws an exception if this matrix is singular.
*
* @return this matrix, inverted
*
* @throws IllegalArgumentException If this matrix cannot be inverted
*/
fun invert(): Matrix3 {
throw UnsupportedOperationException("Matrix3.invert is not implemented") // TODO
}
/**
* Inverts the specified matrix and stores the result in this matrix.
*
* This throws an exception if the matrix is singular.
*
* The result of this method is undefined if this matrix is passed in as the matrix to invert.
*
* @param matrix the matrix whose inverse is computed
*
* @return this matrix set to the inverse of the specified matrix
*/
@Suppress("UNUSED_PARAMETER")
fun invertMatrix(matrix: Matrix3): Matrix3 {
TODO("Matrix3.invertMatrix is not implemented")
}
override fun equals(other: Any?): Boolean {
if (this === other) return true
if (other !is Matrix3) return false
return m.contentEquals(other.m)
}
override fun hashCode() = m.contentHashCode()
override fun toString() =
"Matrix3([${m[0]}, ${m[1]}, ${m[2]}], [${m[3]}, ${m[4]}, ${m[5]}], [${m[6]}, ${m[7]}, ${m[8]}])"
}
© 2015 - 2024 Weber Informatics LLC | Privacy Policy