All Downloads are FREE. Search and download functionalities are using the official Maven repository.

commonMain.earth.worldwind.geom.Matrix4.kt Maven / Gradle / Ivy

Go to download

The WorldWind Kotlin SDK (WWK) includes the library, examples and tutorials for building multiplatform 3D virtual globe applications for Android, Web and Java.

The newest version!
package earth.worldwind.geom

import earth.worldwind.geom.Angle.Companion.radians
import earth.worldwind.util.Logger.ERROR
import earth.worldwind.util.Logger.logMessage
import kotlin.math.*

/**
 * 4 x 4 matrix in row-major order.
 */
open class Matrix4 private constructor(
    /**
     * The matrix's components, stored in row-major order.
     */
    val m: DoubleArray
){
    companion object {
        protected const val NEAR_ZERO_THRESHOLD = 1.0e-8
        protected const val TINY = 1.0e-20
        protected const val EPSILON = 1.0e-10
        protected const val MAX_SWEEPS = 32

        /**
         * The components for the 4 x 4 identity matrix, stored in row-major order.
         */
        internal val identity = doubleArrayOf(
            1.0, 0.0, 0.0, 0.0,
            0.0, 1.0, 0.0, 0.0,
            0.0, 0.0, 1.0, 0.0,
            0.0, 0.0, 0.0, 1.0
        )

        /**
         * Inverts a 4 x 4 matrix, storing the result in a destination argument. The source and destination arguments
         * represent a 4 x 4 matrix with a one-dimensional array in row-major order. The source and destination may
         * reference the same array.
         *
         * @param src the matrix components to invert in row-major order
         * @param dst the inverted components in row-major order
         *
         * @return true if the matrix was successfully inverted, false otherwise
         */
        protected fun invert(src: DoubleArray, dst: DoubleArray): Boolean {
            // Copy the specified matrix into a mutable two-dimensional array.
            val a = Array(4) { DoubleArray(4) }
            a[0][0] = src[0]
            a[0][1] = src[1]
            a[0][2] = src[2]
            a[0][3] = src[3]
            a[1][0] = src[4]
            a[1][1] = src[5]
            a[1][2] = src[6]
            a[1][3] = src[7]
            a[2][0] = src[8]
            a[2][1] = src[9]
            a[2][2] = src[10]
            a[2][3] = src[11]
            a[3][0] = src[12]
            a[3][1] = src[13]
            a[3][2] = src[14]
            a[3][3] = src[15]

            val index = IntArray(4)
            var d = ludcmp(a, index)

            // Compute the matrix's determinant.
            for (i in 0..3) d *= a[i][i]

            // The matrix is singular if its determinant is zero or very close to zero.
            if (abs(d) < NEAR_ZERO_THRESHOLD) return false

            val y = Array(4) { DoubleArray(4) }
            val col = DoubleArray(4)
            for (j in 0..3) {
                for (i in 0..3) col[i] = 0.0
                col[j] = 1.0
                lubksb(a, index, col)
                for (i in 0..3) y[i][j] = col[i]
            }
            dst[0] = y[0][0]
            dst[1] = y[0][1]
            dst[2] = y[0][2]
            dst[3] = y[0][3]
            dst[4] = y[1][0]
            dst[5] = y[1][1]
            dst[6] = y[1][2]
            dst[7] = y[1][3]
            dst[8] = y[2][0]
            dst[9] = y[2][1]
            dst[10] = y[2][2]
            dst[11] = y[2][3]
            dst[12] = y[3][0]
            dst[13] = y[3][1]
            dst[14] = y[3][2]
            dst[15] = y[3][3]
            return true
        }

        /**
         * Utility method to perform an LU factorization of a matrix. Algorithm derived from "Numerical Recipes in C", Press
         * et al., 1988.
         *
         * @param A     matrix to be factored
         * @param index permutation vector
         *
         * @return condition number of matrix
         */
        protected fun ludcmp(A: Array, index: IntArray): Double {
            val vv = DoubleArray(4)
            var d = 1.0
            var temp: Double
            for (i in 0..3) {
                var big = 0.0
                for (j in 0..3) if (abs(A[i][j]).also { temp = it } > big) big = temp
                if (big == 0.0) return 0.0 // Matrix is singular if the entire row contains zero.
                else vv[i] = 1 / big
            }
            for (j in 0..3) {
                for (i in 0 until j) {
                    var sum = A[i][j]
                    for (k in 0 until i) sum -= A[i][k] * A[k][j]
                    A[i][j] = sum
                }
                var big = 0.0
                var imax = -1
                var dum: Double
                for (i in j..3) {
                    var sum = A[i][j]
                    for (k in 0 until j) sum -= A[i][k] * A[k][j]
                    A[i][j] = sum
                    if (vv[i] * abs(sum).also { dum = it } >= big) {
                        big = dum
                        imax = i
                    }
                }
                if (j != imax) {
                    for (k in 0..3) {
                        dum = A[imax][k]
                        A[imax][k] = A[j][k]
                        A[j][k] = dum
                    }
                    d = -d
                    vv[imax] = vv[j]
                }
                index[j] = imax
                if (A[j][j] == 0.0) A[j][j] = TINY
                if (j != 3) {
                    dum = 1.0 / A[j][j]
                    for (i in (j + 1)..3) {
                        A[i][j] *= dum
                    }
                }
            }
            return d
        }

        /**
         * Utility method to solve a linear system with an LU factorization of a matrix. Solves Ax=b, where A is in LU
         * factorized form. Algorithm derived from "Numerical Recipes in C", Press et al., 1988
         *
         * @param A     an LU factorization of a matrix
         * @param index permutation vector of that LU factorization
         * @param b     vector to be solved
         */
        protected fun lubksb(A: Array, index: IntArray, b: DoubleArray) {
            var ii = -1
            for (i in 0..3) {
                val ip = index[i]
                var sum = b[ip]
                b[ip] = b[i]
                if (ii != -1) for (j in ii until i) sum -= A[i][j] * b[j]
                else if (sum != 0.0) ii = i
                b[i] = sum
            }
            for (i in 3 downTo 0) {
                var sum = b[i]
                for (j in (i + 1)..3) sum -= A[i][j] * b[j]
                b[i] = sum / A[i][i]
            }
        }
    }

    /**
     * Constructs a 4 x 4 identity matrix.
     */
    constructor(): this(identity.copyOf())

    /**
     * Constructs a 4 x 4 matrix with specified components.
     *
     * @param m11 matrix element at row 1, column 1
     * @param m12 matrix element at row 1, column 2
     * @param m13 matrix element at row 1, column 3
     * @param m14 matrix element at row 1, column 4
     * @param m21 matrix element at row 2, column 1
     * @param m22 matrix element at row 2, column 2
     * @param m23 matrix element at row 2, column 3
     * @param m24 matrix element at row 2, column 4
     * @param m31 matrix element at row 3, column 1
     * @param m32 matrix element at row 3, column 2
     * @param m33 matrix element at row 3, column 3
     * @param m34 matrix element at row 3, column 4
     * @param m41 matrix element at row 4, column 1
     * @param m42 matrix element at row 4, column 2
     * @param m43 matrix element at row 4, column 3
     * @param m44 matrix element at row 4, column 4
     */
    constructor(
        m11: Double, m12: Double, m13: Double, m14: Double,
        m21: Double, m22: Double, m23: Double, m24: Double,
        m31: Double, m32: Double, m33: Double, m34: Double,
        m41: Double, m42: Double, m43: Double, m44: Double
    ): this(doubleArrayOf(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44))

    /**
     * Constructs a 4 x 4 matrix with the components of a specified matrix.
     *
     * @param matrix the matrix specifying the new components
     */
    constructor(matrix: Matrix4): this(matrix.m.copyOf())

    /**
     * Sets this 4 x 4 matrix to specified components.
     *
     * @param m11 matrix element at row 1, column 1
     * @param m12 matrix element at row 1, column 2
     * @param m13 matrix element at row 1, column 3
     * @param m14 matrix element at row 1, column 4
     * @param m21 matrix element at row 2, column 1
     * @param m22 matrix element at row 2, column 2
     * @param m23 matrix element at row 2, column 3
     * @param m24 matrix element at row 2, column 4
     * @param m31 matrix element at row 3, column 1
     * @param m32 matrix element at row 3, column 2
     * @param m33 matrix element at row 3, column 3
     * @param m34 matrix element at row 3, column 4
     * @param m41 matrix element at row 4, column 1
     * @param m42 matrix element at row 4, column 2
     * @param m43 matrix element at row 4, column 3
     * @param m44 matrix element at row 4, column 4
     *
     * @return this matrix set to the specified components
     */
    fun set(
        m11: Double, m12: Double, m13: Double, m14: Double,
        m21: Double, m22: Double, m23: Double, m24: Double,
        m31: Double, m32: Double, m33: Double, m34: Double,
        m41: Double, m42: Double, m43: Double, m44: Double
    ) = apply {
        m[0] = m11
        m[1] = m12
        m[2] = m13
        m[3] = m14
        m[4] = m21
        m[5] = m22
        m[6] = m23
        m[7] = m24
        m[8] = m31
        m[9] = m32
        m[10] = m33
        m[11] = m34
        m[12] = m41
        m[13] = m42
        m[14] = m43
        m[15] = m44
    }

    /**
     * Sets this 4 x 4 matrix to the components of a specified matrix.
     *
     * @param matrix the matrix specifying the new components
     *
     * @return this matrix with its components set to that of the specified matrix
     */
    fun copy(matrix: Matrix4) = apply { matrix.m.copyInto(m) }

    /**
     * Sets the translation components of this matrix to specified values.
     *
     * @param x the X translation component
     * @param y the Y translation component
     * @param z the Z translation component
     *
     * @return this matrix with its translation components set to the specified values and all other components
     * unmodified
     */
    fun setTranslation(x: Double, y: Double, z: Double) = apply {
        m[3] = x
        m[7] = y
        m[11] = z
    }

    /**
     * Sets the rotation components of this matrix to a specified axis and angle. Positive angles are interpreted as
     * counter-clockwise rotation about the axis when viewed when viewed from the positive end of the axis, looking
     * toward the negative end of the axis.
     * 
* The result of this method is undefined if the axis components are not a unit vector. * * @param x the X component of the rotation axis unit vector * @param y the Y component of the rotation axis unit vector * @param z the Z component of the rotation axis unit vector * @param angle the angle of rotation * * @return this matrix with its rotation components set to the specified values and all other components unmodified */ fun setRotation(x: Double, y: Double, z: Double, angle: Angle) = apply { val c = cos(angle.inRadians) val s = sin(angle.inRadians) m[0] = c + (1 - c) * x * x m[1] = (1 - c) * x * y - s * z m[2] = (1 - c) * x * z + s * y m[4] = (1 - c) * x * y + s * z m[5] = c + (1 - c) * y * y m[6] = (1 - c) * y * z - s * x m[8] = (1 - c) * x * z - s * y m[9] = (1 - c) * y * z + s * x m[10] = c + (1 - c) * z * z } /** * Sets the scale components of this matrix to specified values. * * @param xScale the X scale component * @param yScale the Y scale component * @param zScale the Z scale component * * @return this matrix with its scale components set to the specified values and all other components unmodified */ fun setScale(xScale: Double, yScale: Double, zScale: Double) = apply { m[0] = xScale m[5] = yScale m[10] = zScale } /** * Sets this matrix to the 4 x 4 identity matrix. * * @return this matrix, set to the identity matrix */ fun setToIdentity() = apply { identity.copyInto(m) } /** * Sets this matrix to a translation matrix with specified translation components. * * @param x the X translation component * @param y the Y translation component * @param z the Z translation component * * @return this matrix with its translation components set to those specified and all other components set to that * of an identity matrix */ fun setToTranslation(x: Double, y: Double, z: Double) = apply { m[0] = 1.0 m[1] = 0.0 m[2] = 0.0 m[3] = x m[4] = 0.0 m[5] = 1.0 m[6] = 0.0 m[7] = y m[8] = 0.0 m[9] = 0.0 m[10] = 1.0 m[11] = z m[12] = 0.0 m[13] = 0.0 m[14] = 0.0 m[15] = 1.0 } /** * Sets this matrix to a rotation matrix with a specified axis and angle. Positive angles are interpreted as * counter-clockwise rotation about the axis when viewed when viewed from the positive end of the axis, looking * toward the negative end of the axis. *
* The result of this method is undefined if the axis components are not a unit vector. * * @param x the X component of the rotation axis unit vector * @param y the Y component of the rotation axis unit vector * @param z the Z component of the rotation axis unit vector * @param angle the angle of rotation * * @return this matrix with its rotation components set to those specified and all other components set to that of * an identity matrix */ fun setToRotation(x: Double, y: Double, z: Double, angle: Angle) = apply { val c = cos(angle.inRadians) val s = sin(angle.inRadians) m[0] = c + (1 - c) * x * x m[1] = (1 - c) * x * y - s * z m[2] = (1 - c) * x * z + s * y m[3] = 0.0 m[4] = (1 - c) * x * y + s * z m[5] = c + (1 - c) * y * y m[6] = (1 - c) * y * z - s * x m[7] = 0.0 m[8] = (1 - c) * x * z - s * y m[9] = (1 - c) * y * z + s * x m[10] = c + (1 - c) * z * z m[11] = 0.0 m[12] = 0.0 m[13] = 0.0 m[14] = 0.0 m[15] = 1.0 } /** * Sets this matrix to a scale matrix with specified scale components. * * @param xScale the X scale component * @param yScale the Y scale component * @param zScale the Z scale component * * @return this matrix with its scale components set to those specified and all other components set to that of an * identity matrix */ fun setToScale(xScale: Double, yScale: Double, zScale: Double) = apply { m[0] = xScale m[1] = 0.0 m[2] = 0.0 m[3] = 0.0 m[4] = 0.0 m[5] = yScale m[6] = 0.0 m[7] = 0.0 m[8] = 0.0 m[9] = 0.0 m[10] = zScale m[11] = 0.0 m[12] = 0.0 m[13] = 0.0 m[14] = 0.0 m[15] = 1.0 } /** * Sets this matrix to the matrix product of two specified matrices. * * @param a the first matrix multiplicand * @param b The second matrix multiplicand * * @return this matrix set to the product of a x b */ fun setToMultiply(a: Matrix4, b: Matrix4) = apply { val ma = a.m val mb = b.m m[0] = ma[0] * mb[0] + ma[1] * mb[4] + ma[2] * mb[8] + ma[3] * mb[12] m[1] = ma[0] * mb[1] + ma[1] * mb[5] + ma[2] * mb[9] + ma[3] * mb[13] m[2] = ma[0] * mb[2] + ma[1] * mb[6] + ma[2] * mb[10] + ma[3] * mb[14] m[3] = ma[0] * mb[3] + ma[1] * mb[7] + ma[2] * mb[11] + ma[3] * mb[15] m[4] = ma[4] * mb[0] + ma[5] * mb[4] + ma[6] * mb[8] + ma[7] * mb[12] m[5] = ma[4] * mb[1] + ma[5] * mb[5] + ma[6] * mb[9] + ma[7] * mb[13] m[6] = ma[4] * mb[2] + ma[5] * mb[6] + ma[6] * mb[10] + ma[7] * mb[14] m[7] = ma[4] * mb[3] + ma[5] * mb[7] + ma[6] * mb[11] + ma[7] * mb[15] m[8] = ma[8] * mb[0] + ma[9] * mb[4] + ma[10] * mb[8] + ma[11] * mb[12] m[9] = ma[8] * mb[1] + ma[9] * mb[5] + ma[10] * mb[9] + ma[11] * mb[13] m[10] = ma[8] * mb[2] + ma[9] * mb[6] + ma[10] * mb[10] + ma[11] * mb[14] m[11] = ma[8] * mb[3] + ma[9] * mb[7] + ma[10] * mb[11] + ma[11] * mb[15] m[12] = ma[12] * mb[0] + ma[13] * mb[4] + ma[14] * mb[8] + ma[15] * mb[12] m[13] = ma[12] * mb[1] + ma[13] * mb[5] + ma[14] * mb[9] + ma[15] * mb[13] m[14] = ma[12] * mb[2] + ma[13] * mb[6] + ma[14] * mb[10] + ma[15] * mb[14] m[15] = ma[12] * mb[3] + ma[13] * mb[7] + ma[14] * mb[11] + ma[15] * mb[15] } /** * Sets this matrix to an infinite perspective projection matrix for the specified viewport dimensions, vertical * field of view and near clip distance. *
* An infinite perspective projection matrix maps points in a manner similar to a standard projection matrix, but is * not bounded by depth. Objects at any depth greater than or equal to the near distance may be rendered. In * addition, this matrix interprets vertices with a w-coordinate of 0 as infinitely far from the camera in the * direction indicated by the point's coordinates. *
* The field of view must be positive and less than 180. The near distance must be positive. * * @param viewportWidth the viewport width in screen coordinates * @param viewportHeight the viewport height in screen coordinates * @param vFieldOfView the vertical field of view * @param nearDistance the near clip plane distance in model coordinates * * @throws IllegalArgumentException If either the width or the height is less than or equal to zero, if the field of * view is less than or equal to zero or greater than 180, if the near distance is * less than or equal to zero */ fun setToInfiniteProjection( viewportWidth: Int, viewportHeight: Int, vFieldOfView: Angle, nearDistance: Double ) = apply { require(viewportWidth > 0) { logMessage(ERROR, "Matrix4", "setToInfiniteProjection", "invalidWidth") } require(viewportHeight > 0) { logMessage(ERROR, "Matrix4", "setToInfiniteProjection", "invalidHeight") } require(vFieldOfView.inDegrees > 0.0 && vFieldOfView.inDegrees < 180.0) { logMessage(ERROR, "Matrix4", "setToInfiniteProjection", "invalidFieldOfView") } require(nearDistance > 0) { logMessage(ERROR, "Matrix4", "setToInfiniteProjection", "invalidClipDistance") } // Compute the dimensions of the near rectangle given the specified parameters. val aspect = viewportWidth / viewportHeight.toDouble() val tanFov2 = tan(vFieldOfView.inRadians * 0.5) val nearHeight = 2 * nearDistance * tanFov2 val nearWidth = nearHeight * aspect // Taken from Mathematics for 3D Game Programming and Computer Graphics, Second Edition, equation 4.52. m[0] = 2 * nearDistance / nearWidth m[1] = 0.0 m[2] = 0.0 m[3] = 0.0 m[4] = 0.0 m[5] = 2 * nearDistance / nearHeight m[6] = 0.0 m[7] = 0.0 m[8] = 0.0 m[9] = 0.0 m[10] = -1.0 m[11] = -2 * nearDistance m[12] = 0.0 m[13] = 0.0 m[14] = -1.0 m[15] = 0.0 } /** * Sets this matrix to a perspective projection matrix for the specified viewport dimensions, vertical field of view * and clip distances. *
* A perspective projection matrix maps points in eye coordinates into clip coordinates in a way that causes distant * objects to appear smaller, and preserves the appropriate depth information for each point. In model coordinates, * a perspective projection is defined by frustum originating at the eye position and extending outward in the * viewer's direction. The near distance and the far distance identify the minimum and maximum distance, * respectively, at which an object in the scene is visible. *
* The field of view must be positive and less than 180. Near and far distances must be positive and must not be * equal to one another. * * @param viewportWidth the viewport width in screen coordinates * @param viewportHeight the viewport height in screen coordinates * @param vFieldOfView the vertical field of view * @param nearDistance the near clip plane distance in model coordinates * @param farDistance the far clip plane distance in model coordinates * * @throws IllegalArgumentException If either the width or the height is less than or equal to zero, if the field of * view is less than or equal to zero or greater than 180, if the near and far * distances are equal, or if either the near or far distance are less than or * equal to zero */ fun setToPerspectiveProjection( viewportWidth: Int, viewportHeight: Int, vFieldOfView: Angle, nearDistance: Double, farDistance: Double ) = apply { require(viewportWidth > 0) { logMessage(ERROR, "Matrix4", "setToPerspectiveProjection", "invalidWidth") } require(viewportHeight > 0) { logMessage(ERROR, "Matrix4", "setToPerspectiveProjection", "invalidHeight") } require(vFieldOfView.inDegrees > 0.0 && vFieldOfView.inDegrees < 180.0) { logMessage(ERROR, "Matrix4", "setToPerspectiveProjection", "invalidFieldOfView") } require(nearDistance != farDistance) { logMessage(ERROR, "Matrix4", "setToPerspectiveProjection", "invalidClipDistance") } require(nearDistance > 0 && farDistance > 0) { logMessage(ERROR, "Matrix4", "setToPerspectiveProjection", "invalidClipDistance") } // Compute the dimensions of the near rectangle given the specified parameters. val aspect = viewportWidth / viewportHeight.toDouble() val tanFov2 = tan(vFieldOfView.inRadians * 0.5) val nearHeight = 2 * nearDistance * tanFov2 val nearWidth = nearHeight * aspect // Taken from Mathematics for 3D Game Programming and Computer Graphics, Second Edition, equation 4.52. m[0] = 2 * nearDistance / nearWidth m[1] = 0.0 m[2] = 0.0 m[3] = 0.0 m[4] = 0.0 m[5] = 2 * nearDistance / nearHeight m[6] = 0.0 m[7] = 0.0 m[8] = 0.0 m[9] = 0.0 m[10] = -(farDistance + nearDistance) / (farDistance - nearDistance) m[11] = -(2 * nearDistance * farDistance) / (farDistance - nearDistance) m[12] = 0.0 m[13] = 0.0 m[14] = -1.0 m[15] = 0.0 } /** * Sets this matrix to a screen projection matrix for the specified viewport dimensions. *
* A screen projection matrix is an orthographic projection that interprets points in model coordinates as * representing a screen XY and a Z depth. Screen projection matrices therefore map coordinates directly into screen * coordinates without modification. A point's XY coordinates are interpreted as literal screen coordinates and must * be in the viewport to be visible. A point's Z coordinate is interpreted as a depth value that ranges from 0 to 1. * Additionally, the screen projection matrix preserves the depth value returned by * `RenderContext.project`. * * @param viewportWidth the viewport width in screen coordinates * @param viewportHeight the viewport height in screen coordinates * * @throws IllegalArgumentException If either the width or the height is less than or equal to zero */ fun setToScreenProjection(viewportWidth: Double, viewportHeight: Double) = apply { require(viewportWidth > 0) { logMessage(ERROR, "Matrix4", "setToScreenProjection", "invalidWidth") } require(viewportHeight > 0) { logMessage(ERROR, "Matrix4", "setToScreenProjection", "invalidHeight") } // Taken from Mathematics for 3D Game Programming and Computer Graphics, Second Edition, equation 4.57. // Simplified to assume that the viewport origin is (0, 0). // // The third row of this projection matrix is configured so that points with z coordinates representing // depth values ranging from 0 to 1 are not modified after transformation into window coordinates. This // projection matrix maps z values in the range [0, 1] to the range [-1, 1] by applying the following // function to incoming z coordinates: // // zp = z0 * 2 - 1 // // Where 'z0' is the point's z coordinate and 'zp' is the projected z coordinate. The GPU then maps the // projected z coordinate into window coordinates in the range [0, 1] by applying the following function: // // zw = zp * 0.5 + 0.5 // // The result is that a point's z coordinate is effectively passed to the GPU without modification. m[0] = 2 / viewportWidth m[1] = 0.0 m[2] = 0.0 m[3] = -1.0 m[4] = 0.0 m[5] = 2 / viewportHeight m[6] = 0.0 m[7] = -1.0 m[8] = 0.0 m[9] = 0.0 m[10] = 2.0 m[11] = -1.0 m[12] = 0.0 m[13] = 0.0 m[14] = 0.0 m[15] = 1.0 } /** * Sets this matrix to the symmetric covariance Matrix computed from an array of points. *
* The computed covariance matrix represents the correlation between each pair of x-, y-, and z-coordinates as * they're distributed about the point array's arithmetic mean. Its layout is as follows: *
* ` C(x, x) C(x, y) C(x, z)
C(x, y) C(y, y) C(y, z)
C(x, z) C(y, z) C(z, z) ` *
* C(i, j) is the covariance of coordinates i and j, where i or j are a coordinate's dispersion about its mean * value. If any entry is zero, then there's no correlation between the two coordinates defining that entry. If the * returned matrix is diagonal, then all three coordinates are uncorrelated, and the specified point is distributed * evenly about its mean point. * * @param array the array of points to consider * @param count the number of array elements to consider * @param stride the number of coordinates between the first coordinate of adjacent points - must be at least 3 * * @return this matrix set to the covariance matrix for the specified array of points * * @throws IllegalArgumentException If the array is null or empty, if the count is less than 0, or if the stride is * less than 3 */ fun setToCovarianceOfPoints(array: FloatArray, count: Int, stride: Int) = apply { require(array.size >= stride) { logMessage(ERROR, "Matrix4", "setToCovarianceOfPoints", "invalidArray") } require(count >= 0) { logMessage(ERROR, "Matrix4", "setToCovarianceOfPoints", "invalidCount") } require(stride >= 3) { logMessage(ERROR, "Matrix4", "setToCovarianceOfPoints", "invalidStride") } var mx = 0.0 var my = 0.0 var mz = 0.0 var c11 = 0.0 var c22 = 0.0 var c33 = 0.0 var c12 = 0.0 var c13 = 0.0 var c23 = 0.0 var numPoints = 0.0 for (idx in 0 until count step stride) { mx += array[idx] my += array[idx + 1] mz += array[idx + 2] numPoints++ } mx /= numPoints my /= numPoints mz /= numPoints for (idx in 0 until count step stride) { val dx = array[idx] - mx val dy = array[idx + 1] - my val dz = array[idx + 2] - mz c11 += dx * dx c22 += dy * dy c33 += dz * dz c12 += dx * dy // c12 = c21 c13 += dx * dz // c13 = c31 c23 += dy * dz // c23 = c32 } m[0] = c11 / numPoints m[1] = c12 / numPoints m[2] = c13 / numPoints m[3] = 0.0 m[4] = c12 / numPoints m[5] = c22 / numPoints m[6] = c23 / numPoints m[7] = 0.0 m[8] = c13 / numPoints m[9] = c23 / numPoints m[10] = c33 / numPoints m[11] = 0.0 m[12] = 0.0 m[13] = 0.0 m[14] = 0.0 m[15] = 0.0 } /** * Multiplies this matrix by a translation matrix with specified translation values. * * @param x the X translation component * @param y the Y translation component * @param z the Z translation component * * @return this matrix multiplied by the translation matrix implied by the specified values */ fun multiplyByTranslation(x: Double, y: Double, z: Double) = apply { m[3] += m[0] * x + m[1] * y + m[2] * z m[7] += m[4] * x + m[5] * y + m[6] * z m[11] += m[8] * x + m[9] * y + m[10] * z m[15] += m[12] * x + m[13] * y + m[14] * z } /** * Multiplies this matrix by a rotation matrix about a specified axis and angle. Positive angles are interpreted as * counter-clockwise rotation about the axis. * * @param x the X component of the rotation axis * @param y the Y component of the rotation axis * @param z the Z component of the rotation axis * @param angle the angle of rotation * * @return this matrix multiplied by the rotation matrix implied by the specified values */ fun multiplyByRotation(x: Double, y: Double, z: Double, angle: Angle) = apply { val c = cos(angle.inRadians) val s = sin(angle.inRadians) multiplyByMatrix( c + (1 - c) * x * x, (1 - c) * x * y - s * z, (1 - c) * x * z + s * y, 0.0, (1 - c) * x * y + s * z, c + (1 - c) * y * y, (1 - c) * y * z - s * x, 0.0, (1 - c) * x * z - s * y, (1 - c) * y * z + s * x, c + (1 - c) * z * z, 0.0, 0.0, 0.0, 0.0, 1.0 ) } /** * Multiplies this matrix by a scale matrix with specified values. * * @param xScale the X scale component * @param yScale the Y scale component * @param zScale the Z scale component * * @return this matrix multiplied by the scale matrix implied by the specified values */ fun multiplyByScale(xScale: Double, yScale: Double, zScale: Double) = apply { m[0] *= xScale m[4] *= xScale m[8] *= xScale m[12] *= xScale m[1] *= yScale m[5] *= yScale m[9] *= yScale m[13] *= yScale m[2] *= zScale m[6] *= zScale m[10] *= zScale m[14] *= zScale } /** * Multiplies this matrix by a specified matrix. * * @param matrix the matrix to multiply with this matrix * * @return this matrix after multiplying it by the specified matrix */ fun multiplyByMatrix(matrix: Matrix4) = apply { val ma = m val mb = matrix.m var ma0 = ma[0] var ma1 = ma[1] var ma2 = ma[2] var ma3 = ma[3] ma[0] = ma0 * mb[0] + ma1 * mb[4] + ma2 * mb[8] + ma3 * mb[12] ma[1] = ma0 * mb[1] + ma1 * mb[5] + ma2 * mb[9] + ma3 * mb[13] ma[2] = ma0 * mb[2] + ma1 * mb[6] + ma2 * mb[10] + ma3 * mb[14] ma[3] = ma0 * mb[3] + ma1 * mb[7] + ma2 * mb[11] + ma3 * mb[15] ma0 = ma[4] ma1 = ma[5] ma2 = ma[6] ma3 = ma[7] ma[4] = ma0 * mb[0] + ma1 * mb[4] + ma2 * mb[8] + ma3 * mb[12] ma[5] = ma0 * mb[1] + ma1 * mb[5] + ma2 * mb[9] + ma3 * mb[13] ma[6] = ma0 * mb[2] + ma1 * mb[6] + ma2 * mb[10] + ma3 * mb[14] ma[7] = ma0 * mb[3] + ma1 * mb[7] + ma2 * mb[11] + ma3 * mb[15] ma0 = ma[8] ma1 = ma[9] ma2 = ma[10] ma3 = ma[11] ma[8] = ma0 * mb[0] + ma1 * mb[4] + ma2 * mb[8] + ma3 * mb[12] ma[9] = ma0 * mb[1] + ma1 * mb[5] + ma2 * mb[9] + ma3 * mb[13] ma[10] = ma0 * mb[2] + ma1 * mb[6] + ma2 * mb[10] + ma3 * mb[14] ma[11] = ma0 * mb[3] + ma1 * mb[7] + ma2 * mb[11] + ma3 * mb[15] ma0 = ma[12] ma1 = ma[13] ma2 = ma[14] ma3 = ma[15] ma[12] = ma0 * mb[0] + ma1 * mb[4] + ma2 * mb[8] + ma3 * mb[12] ma[13] = ma0 * mb[1] + ma1 * mb[5] + ma2 * mb[9] + ma3 * mb[13] ma[14] = ma0 * mb[2] + ma1 * mb[6] + ma2 * mb[10] + ma3 * mb[14] ma[15] = ma0 * mb[3] + ma1 * mb[7] + ma2 * mb[11] + ma3 * mb[15] } /** * Multiplies this matrix by a matrix specified by individual components. * * @param m11 matrix element at row 1, column 1 * @param m12 matrix element at row 1, column 2 * @param m13 matrix element at row 1, column 3 * @param m14 matrix element at row 1, column 4 * @param m21 matrix element at row 2, column 1 * @param m22 matrix element at row 2, column 2 * @param m23 matrix element at row 2, column 3 * @param m24 matrix element at row 2, column 4 * @param m31 matrix element at row 3, column 1 * @param m32 matrix element at row 3, column 2 * @param m33 matrix element at row 3, column 3 * @param m34 matrix element at row 3, column 4 * @param m41 matrix element at row 4, column 1 * @param m42 matrix element at row 4, column 2 * @param m43 matrix element at row 4, column 3 * @param m44 matrix element at row 4, column 4 * * @return this matrix with its components multiplied by the specified values */ fun multiplyByMatrix( m11: Double, m12: Double, m13: Double, m14: Double, m21: Double, m22: Double, m23: Double, m24: Double, m31: Double, m32: Double, m33: Double, m34: Double, m41: Double, m42: Double, m43: Double, m44: Double ) = apply { var mr1 = m[0] var mr2 = m[1] var mr3 = m[2] var mr4 = m[3] m[0] = mr1 * m11 + mr2 * m21 + mr3 * m31 + mr4 * m41 m[1] = mr1 * m12 + mr2 * m22 + mr3 * m32 + mr4 * m42 m[2] = mr1 * m13 + mr2 * m23 + mr3 * m33 + mr4 * m43 m[3] = mr1 * m14 + mr2 * m24 + mr3 * m34 + mr4 * m44 mr1 = m[4] mr2 = m[5] mr3 = m[6] mr4 = m[7] m[4] = mr1 * m11 + mr2 * m21 + mr3 * m31 + mr4 * m41 m[5] = mr1 * m12 + mr2 * m22 + mr3 * m32 + mr4 * m42 m[6] = mr1 * m13 + mr2 * m23 + mr3 * m33 + mr4 * m43 m[7] = mr1 * m14 + mr2 * m24 + mr3 * m34 + mr4 * m44 mr1 = m[8] mr2 = m[9] mr3 = m[10] mr4 = m[11] m[8] = mr1 * m11 + mr2 * m21 + mr3 * m31 + mr4 * m41 m[9] = mr1 * m12 + mr2 * m22 + mr3 * m32 + mr4 * m42 m[10] = mr1 * m13 + mr2 * m23 + mr3 * m33 + mr4 * m43 m[11] = mr1 * m14 + mr2 * m24 + mr3 * m34 + mr4 * m44 mr1 = m[12] mr2 = m[13] mr3 = m[14] mr4 = m[15] m[12] = mr1 * m11 + mr2 * m21 + mr3 * m31 + mr4 * m41 m[13] = mr1 * m12 + mr2 * m22 + mr3 * m32 + mr4 * m42 m[14] = mr1 * m13 + mr2 * m23 + mr3 * m33 + mr4 * m43 m[15] = mr1 * m14 + mr2 * m24 + mr3 * m34 + mr4 * m44 } /** * Transposes this matrix in place. * * @return this matrix, transposed. */ fun transpose() = apply { var tmp = m[1] m[1] = m[4] m[4] = tmp tmp = m[2] m[2] = m[8] m[8] = tmp tmp = m[3] m[3] = m[12] m[12] = tmp tmp = m[6] m[6] = m[9] m[9] = tmp tmp = m[7] m[7] = m[13] m[13] = tmp tmp = m[11] m[11] = m[14] m[14] = tmp } /** * Sets this matrix to the transpose of a specified matrix. * * @param matrix the matrix whose transpose is to be computed * * @return this matrix with its values set to the transpose of the specified matrix */ fun transposeMatrix(matrix: Matrix4) = apply { m[0] = matrix.m[0] m[1] = matrix.m[4] m[2] = matrix.m[8] m[3] = matrix.m[12] m[4] = matrix.m[1] m[5] = matrix.m[5] m[6] = matrix.m[9] m[7] = matrix.m[13] m[8] = matrix.m[2] m[9] = matrix.m[6] m[10] = matrix.m[10] m[11] = matrix.m[14] m[12] = matrix.m[3] m[13] = matrix.m[7] m[14] = matrix.m[11] m[15] = matrix.m[15] } /** * Transposes this matrix, storing the result in the specified single precision array. The result is compatible with * GLSL uniform matrices, and can be passed to the function glUniformMatrix4fv. * * @param result a pre-allocated array of length 16 in which to return the transposed components * * @return the result argument set to the transposed components */ fun transposeToArray(result: FloatArray, offset: Int): FloatArray { var o = offset require(result.size - o >= 16) { logMessage(ERROR, "Matrix4", "transposeToArray", "missingArray") } result[o++] = m[0].toFloat() result[o++] = m[4].toFloat() result[o++] = m[8].toFloat() result[o++] = m[12].toFloat() result[o++] = m[1].toFloat() result[o++] = m[5].toFloat() result[o++] = m[9].toFloat() result[o++] = m[13].toFloat() result[o++] = m[2].toFloat() result[o++] = m[6].toFloat() result[o++] = m[10].toFloat() result[o++] = m[14].toFloat() result[o++] = m[3].toFloat() result[o++] = m[7].toFloat() result[o++] = m[11].toFloat() result[o] = m[15].toFloat() return result } /** * Inverts this matrix in place. *
* This throws an exception if this matrix is singular. * * @return this matrix, inverted * * @throws IllegalArgumentException If this matrix cannot be inverted */ fun invert() = apply { val success = invert(m, m) // passing the same array as src and dst is supported require(success) { // the matrix is singular logMessage(ERROR, "Matrix4", "invertMatrix", "singularMatrix") } } /** * Inverts the specified matrix and stores the result in this matrix. *
* This throws an exception if the specified matrix is singular. *
* The result of this method is undefined if this matrix is passed in as the matrix to invert. * * @param matrix the matrix whose inverse is computed * * @return this matrix set to the inverse of the specified matrix * * @throws IllegalArgumentException If the matrix cannot be inverted */ fun invertMatrix(matrix: Matrix4) = apply { val success = invert(matrix.m, m) // store inverse of matrix in this matrix require(success) { // the matrix is singular logMessage(ERROR, "Matrix4", "invertMatrix", "singularMatrix") } } /** * Inverts this orthonormal transform matrix in place. This matrix's upper 3x3 is transposed, then its fourth column * is transformed by the transposed upper 3x3 and negated. *
* The result of this method is undefined if this matrix's values are not consistent with those of an orthonormal * transform. * * @return this matrix, inverted */ fun invertOrthonormal() = apply { // This is assumed to contain matrix 3D transformation matrix. The upper 3x3 is transposed, the translation // components are multiplied by the transposed-upper-3x3 and negated. var tmp = m[1] m[1] = m[4] m[4] = tmp tmp = m[2] m[2] = m[8] m[8] = tmp tmp = m[6] m[6] = m[9] m[9] = tmp val x = m[3] val y = m[7] val z = m[11] m[3] = -(m[0] * x) - m[1] * y - m[2] * z m[7] = -(m[4] * x) - m[5] * y - m[6] * z m[11] = -(m[8] * x) - m[9] * y - m[10] * z m[12] = 0.0 m[13] = 0.0 m[14] = 0.0 m[15] = 1.0 } /** * Inverts the specified orthonormal transform matrix and stores the result in 'this' matrix. The specified matrix's * upper 3x3 is transposed, then its fourth column is transformed by the transposed upper 3x3 and negated. The * result is stored in 'this' matrix. *
* The result of this method is undefined if this matrix is passed in as the matrix to invert, or if the matrix's * values are not consistent with those of an orthonormal transform. * * @param matrix the matrix whose inverse is computed. The matrix is assumed to represent an orthonormal transform * matrix. * * @return this matrix set to the inverse of the specified matrix */ fun invertOrthonormalMatrix(matrix: Matrix4) = apply { // The matrix is assumed to contain matrix 3D transformation matrix. The upper 3x3 is transposed, the translation // components are multiplied by the transposed-upper-3x3 and negated. m[0] = matrix.m[0] m[1] = matrix.m[4] m[2] = matrix.m[8] m[3] = -(matrix.m[0] * matrix.m[3]) - matrix.m[4] * matrix.m[7] - matrix.m[8] * matrix.m[11] m[4] = matrix.m[1] m[5] = matrix.m[5] m[6] = matrix.m[9] m[7] = -(matrix.m[1] * matrix.m[3]) - matrix.m[5] * matrix.m[7] - matrix.m[9] * matrix.m[11] m[8] = matrix.m[2] m[9] = matrix.m[6] m[10] = matrix.m[10] m[11] = -(matrix.m[2] * matrix.m[3]) - matrix.m[6] * matrix.m[7] - matrix.m[10] * matrix.m[11] m[12] = 0.0 m[13] = 0.0 m[14] = 0.0 m[15] = 1.0 } /** * Applies a specified depth offset to this projection matrix. The depth offset may be any real number and is * typically used to draw geometry slightly closer to the user's eye in order to give those shapes visual priority * over nearby or geometry. An offset of zero has no effect. An offset less than zero brings depth values closer to * the eye, while an offset greater than zero pushes depth values away from the eye. *
* The result of this method is undefined if this matrix is not a projection matrix. Projection matrices can be * created by calling `setToPerspectiveProjection` or `setToScreenProjection` *
* Depth offset may be applied to both perspective and screen projection matrices. The effect on each type is * outlined here: *
* **Perspective Projection** *
* The effect of depth offset on a perspective projection increases exponentially with distance from the eye. This * has the effect of adjusting the offset for the loss in depth precision with geometry drawn further from the eye. * Distant geometry requires a greater offset to differentiate itself from nearby geometry, while close geometry * does not. *
* **Screen Projection** *
* The effect of depth offset on an screen projection increases linearly with distance from the eye. While it is * reasonable to apply a depth offset to an screen projection, the effect is most appropriate when applied to the * projection used to draw the scene. For example, when an object's coordinates are projected by a perspective * projection into screen coordinates then drawn using a screen projection, it is best to apply the offset to the * original perspective projection. The method `RenderContext.project` performs the correct behavior for * the projection type used to draw the scene. * * @param depthOffset the amount of offset to apply * * @return this matrix with its components adjusted to account for the specified depth offset */ fun offsetProjectionDepth(depthOffset: Double) = apply { m[10] *= 1 + depthOffset } /** * Returns this viewing matrix's eye point. In model coordinates, a viewing matrix's eye point is the point the * viewer is looking from and maps to the center of the screen. *
* The result of this method is undefined if this matrix is not a viewing matrix. * * @param result a pre-allocated `Vec3` in which to return the extracted value * * @return the specified result argument containing the viewing matrix's eye point */ fun extractEyePoint(result: Vec3): Vec3 { // The eye point of a modelview matrix is computed by transforming the origin (0, 0, 0, 1) by the matrix's // inverse. This is equivalent to transforming the inverse of this matrix's translation components in the // rightmost column by the transpose of its upper 3x3 components. result.x = -(m[0] * m[3]) - m[4] * m[7] - m[8] * m[11] result.y = -(m[1] * m[3]) - m[5] * m[7] - m[9] * m[11] result.z = -(m[2] * m[3]) - m[6] * m[7] - m[10] * m[11] return result } /** * Returns this viewing matrix's forward vector. *
* The result of this method is undefined if this matrix is not a viewing matrix. * * @param result a pre-allocated `Vec3` in which to return the extracted value * * @return the specified result argument containing the viewing matrix's forward vector */ fun extractForwardVector(result: Vec3): Vec3 { // The forward vector of a modelview matrix is computed by transforming the negative Z axis (0, 0, -1, 0) by the // matrix's inverse. We have pre-computed the result inline here to simplify this computation. result.x = -m[8] result.y = -m[9] result.z = -m[10] return result } /** * Returns this viewing matrix's heading angle. The roll argument enables the caller to disambiguate * heading and roll when the two rotation axes for heading and roll are parallel, causing gimbal lock. *
* The result of this method is undefined if this matrix is not a viewing matrix. * * @param roll the viewing matrix's roll angle, or 0 if the roll angle is unknown * * @return the extracted heading angle */ fun extractHeading(roll: Angle): Angle { val cr = cos(roll.inRadians) val sr = sin(roll.inRadians) val ch = cr * m[0] - sr * m[4] val sh = sr * m[5] - cr * m[1] return atan2(sh, ch).radians } /** * Returns this viewing matrix's tilt angle. *
* The result of this method is undefined if this matrix is not a viewing matrix. * * @return the extracted heading angle */ fun extractTilt(): Angle { val ct = m[10] val st = sqrt(m[2] * m[2] + m[6] * m[6]) return atan2(st, ct).radians } /** * Returns this symmetric matrix's eigenvectors. The eigenvectors are returned in the specified result arguments in * order of descending magnitude (most prominent to least prominent). Each eigenvector has length equal to its * corresponding eigenvalue. *
* This method returns false if this matrix is not a symmetric matrix. * * @param result1 a pre-allocated Vec3 in which to return the most prominent eigenvector * @param result2 a pre-allocated Vec3 in which to return the second most prominent eigenvector * @param result3 a pre-allocated Vec3 in which to return the least prominent eigenvector * * @return true if this matrix is symmetric and its eigenvectors can be determined, otherwise false */ fun extractEigenvectors(result1: Vec3, result2: Vec3, result3: Vec3): Boolean { // Taken from Mathematics for 3D Game Programming and Computer Graphics, Second Edition, // listing 14.6. if (m[1] != m[4] || m[2] != m[8] || m[6] != m[9]) return false // matrix is not symmetric // Since the matrix is symmetric m12=m21, m13=m31 and m23=m32, therefore we can ignore the values m21, // m32 and m32. var m11 = m[0] var m12 = m[1] var m13 = m[2] var m22 = m[5] var m23 = m[6] var m33 = m[10] val r = Array(3) { DoubleArray(3) } r[2][2] = 1.0 r[1][1] = r[2][2] r[0][0] = r[1][1] repeat(MAX_SWEEPS) { // Exit if off-diagonal entries small enough if (abs(m12) < EPSILON && abs(m13) < EPSILON && abs(m23) < EPSILON) return@repeat // Annihilate (1,2) entry. if (m12 != 0.0) { val u = (m22 - m11) * 0.5 / m12 val u2 = u * u val u2p1 = u2 + 1 val t = if (u2p1 != u2) (if (u < 0) -1 else 1) * (sqrt(u2p1) - abs(u)) else 0.5 / u val c = 1 / sqrt(t * t + 1) val s = c * t m11 -= t * m12 m22 += t * m12 m12 = 0.0 var temp = c * m13 - s * m23 m23 = s * m13 + c * m23 m13 = temp for (i in 0..2) { temp = c * r[i][0] - s * r[i][1] r[i][1] = s * r[i][0] + c * r[i][1] r[i][0] = temp } } // Annihilate (1,3) entry. if (m13 != 0.0) { val u = (m33 - m11) * 0.5 / m13 val u2 = u * u val u2p1 = u2 + 1 val t = if (u2p1 != u2) (if (u < 0) -1 else 1) * (sqrt(u2p1) - abs(u)) else 0.5 / u val c = 1 / sqrt(t * t + 1) val s = c * t m11 -= t * m13 m33 += t * m13 m13 = 0.0 var temp = c * m12 - s * m23 m23 = s * m12 + c * m23 m12 = temp for (i in 0..2) { temp = c * r[i][0] - s * r[i][2] r[i][2] = s * r[i][0] + c * r[i][2] r[i][0] = temp } } // Annihilate (2,3) entry. if (m23 != 0.0) { val u = (m33 - m22) * 0.5 / m23 val u2 = u * u val u2p1 = u2 + 1 val t = if (u2p1 != u2) (if (u < 0) -1 else 1) * (sqrt(u2p1) - abs(u)) else 0.5 / u val c = 1 / sqrt(t * t + 1) val s = c * t m22 -= t * m23 m33 += t * m23 m23 = 0.0 var temp = c * m12 - s * m13 m13 = s * m12 + c * m13 m12 = temp for (i in 0..2) { temp = c * r[i][1] - s * r[i][2] r[i][2] = s * r[i][1] + c * r[i][2] r[i][1] = temp } } } // Sort the eigenvectors by descending magnitude. var i1 = 0 var i2 = 1 var i3 = 2 if (m11 < m22) { val temp = m11 m11 = m22 m22 = temp val itemp = i1 i1 = i2 i2 = itemp } if (m22 < m33) { val temp = m22 m22 = m33 m33 = temp val itemp = i2 i2 = i3 i3 = itemp } if (m11 < m22) { val temp = m11 m11 = m22 m22 = temp val itemp = i1 i1 = i2 i2 = itemp } result1.set(r[0][i1], r[1][i1], r[2][i1]) result2.set(r[0][i2], r[1][i2], r[2][i2]) result3.set(r[0][i3], r[1][i3], r[2][i3]) result1.normalize() result2.normalize() result3.normalize() result1.multiply(m11) result2.multiply(m22) result3.multiply(m33) return true } /** * Projects a Cartesian point to screen coordinates. This method assumes this matrix represents an inverse * modelview-projection matrix. The result of this method is undefined if this matrix is not an inverse * modelview-projection matrix. *
* The resultant screen point is in OpenGL screen coordinates, with the origin in the bottom-left corner and axes * that extend up and to the right from the origin. *
* This stores the projected point in the result argument, and returns a boolean value indicating whether or not the * projection is successful. This returns false if the Cartesian point is clipped by the near clipping plane or the * far clipping plane. * * @param x the Cartesian point's X component * @param y the Cartesian point's y component * @param z the Cartesian point's z component * @param viewport the viewport defining the screen point's coordinate system * @param result a pre-allocated [Vec3] in which to return the projected point * * @return true if the transformation is successful, otherwise false */ fun project(x: Double, y: Double, z: Double, viewport: Viewport, result: Vec3): Boolean { // Transform the model point from model coordinates to eye coordinates then to clip coordinates. This inverts // the Z axis and stores the negative of the eye coordinate Z value in the W coordinate. var sx = m[0] * x + m[1] * y + m[2] * z + m[3] var sy = m[4] * x + m[5] * y + m[6] * z + m[7] var sz = m[8] * x + m[9] * y + m[10] * z + m[11] val sw = m[12] * x + m[13] * y + m[14] * z + m[15] if (sw == 0.0) return false // Complete the conversion from model coordinates to clip coordinates by dividing by W. The resultant X, Y // and Z coordinates are in the range [-1,1]. sx /= sw sy /= sw sz /= sw // Clip the point against the near and far clip planes. if (sz < -1 || sz > 1) return false // Convert the point from clip coordinate to the range [0,1]. This enables the X and Y coordinates to be // converted to screen coordinates, and the Z coordinate to represent a depth value in the range[0,1]. sx = sx * 0.5 + 0.5 sy = sy * 0.5 + 0.5 sz = sz * 0.5 + 0.5 // Convert the X and Y coordinates from the range [0,1] to screen coordinates. sx = sx * viewport.width + viewport.x sy = sy * viewport.height + viewport.y result.x = sx result.y = sy result.z = sz return true } /** * Un-projects a screen coordinate point to Cartesian coordinates at the near clip plane and the far clip plane. * This method assumes this matrix represents an inverse modelview-projection matrix. The result of this method is * undefined if this matrix is not an inverse modelview-projection matrix. *
* The screen point is understood to be in OpenGL screen coordinates, with the origin in the bottom-left corner and * axes that extend up and to the right from the origin. *
* This function stores the un-projected points in the result argument, and a boolean value indicating whether the * un-projection is successful. * * @param x the screen point's X component * @param y the screen point's Y component * @param viewport the viewport defining the screen point's coordinate system * @param nearResult a pre-allocated [Vec3] in which to return the un-projected near clip plane point * @param farResult a pre-allocated [Vec3] in which to return the un-projected far clip plane point * * @return true if the transformation is successful, otherwise false */ fun unProject(x: Double, y: Double, viewport: Viewport, nearResult: Vec3, farResult: Vec3): Boolean { // Convert the XY screen coordinates to coordinates in the range [0, 1]. This enables the XY coordinates to // be converted to clip coordinates. var sx = (x - viewport.x) / viewport.width var sy = (y - viewport.y) / viewport.height // Convert from coordinates in the range [0, 1] to clip coordinates in the range [-1, 1]. sx = sx * 2 - 1 sy = sy * 2 - 1 // Transform the screen point from clip coordinates to model coordinates. This is a partial transformation that // factors out the contribution from the screen point's X and Y components. The contribution from the Z // component, which is both -1 and +1, is included next. val mx = m[0] * sx + m[1] * sy + m[3] val my = m[4] * sx + m[5] * sy + m[7] val mz = m[8] * sx + m[9] * sy + m[11] val mw = m[12] * sx + m[13] * sy + m[15] // Transform the screen point at the near clip plane (z = -1) to model coordinates. val nx = mx - m[2] val ny = my - m[6] val nz = mz - m[10] val nw = mw - m[14] // Transform the screen point at the far clip plane (z = +1) to model coordinates. val fx = mx + m[2] val fy = my + m[6] val fz = mz + m[10] val fw = mw + m[14] if (nw == 0.0 || fw == 0.0) return false // Complete the conversion from near clip coordinates to model coordinates by dividing by the W component. nearResult.x = nx / nw nearResult.y = ny / nw nearResult.z = nz / nw // Complete the conversion from far clip coordinates to model coordinates by dividing by the W component. farResult.x = fx / fw farResult.y = fy / fw farResult.z = fz / fw return true } /** * Computes the bounding rectangle for a unit square after applying a transformation matrix to the square's four * corners. * * @param result a pre-allocated Viewport in which to return the computed bounding rectangle * * @return the result argument set to the computed bounding rectangle */ fun boundingRectForUnitSquare(result: Viewport): Viewport { // transform of (0, 0) val x1 = m[3] val y1 = m[7] // transform of (1, 0) val x2 = m[0] + m[3] val y2 = m[4] + m[7] // transform of (0, 1) val x3 = m[1] + m[3] val y3 = m[5] + m[7] // transform of (1, 1) val x4 = m[0] + m[1] + m[3] val y4 = m[4] + m[5] + m[7] val minX = min(min(x1, x2), min(x3, x4)).toInt() val maxX = max(max(x1, x2), max(x3, x4)).toInt() val minY = min(min(y1, y2), min(y3, y4)).toInt() val maxY = max(max(y1, y2), max(y3, y4)).toInt() return result.set(minX, minY, maxX - minX, maxY - minY) } override fun equals(other: Any?): Boolean { if (this === other) return true if (other !is Matrix4) return false return m.contentEquals(other.m) } override fun hashCode() = m.contentHashCode() override fun toString() = "Matrix4([${m[0]}, ${m[1]}, ${m[2]}, ${m[3]}], [${m[4]}, ${m[5]}, ${m[6]}, ${m[7]}], [${m[8]}, ${m[9]}, ${m[10]}, ${m[11]}], [${m[12]}, ${m[13]}, ${m[14]}, ${m[15]}])" }




© 2015 - 2025 Weber Informatics LLC | Privacy Policy