commonMain.earth.worldwind.util.SunPosition.kt Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of worldwind-jvm Show documentation
Show all versions of worldwind-jvm Show documentation
The WorldWind Kotlin SDK (WWK) includes the library, examples and tutorials for building multiplatform 3D virtual globe applications for Android, Web and Java.
The newest version!
package earth.worldwind.util
import earth.worldwind.geom.Angle
import earth.worldwind.geom.Angle.Companion.degrees
import earth.worldwind.geom.Angle.Companion.radians
import earth.worldwind.geom.Location
import kotlinx.datetime.Instant
import kotlinx.datetime.TimeZone
import kotlinx.datetime.toLocalDateTime
import kotlin.math.*
/**
* Provides utilities for determining the Sun geographic and celestial location.
*/
object SunPosition {
class CelestialLocation(val declination: Angle, val rightAscension: Angle)
/**
* Computes the geographic location of the sun for a given date
* @param instant Input instant
* @return the geographic location
*/
fun getAsGeographicLocation(instant: Instant) = celestialToGeographic(getAsCelestialLocation(instant), instant)
/**
* Computes the celestial location of the sun for a given julianDate
* @param instant Input instant
* @return the celestial location
*/
fun getAsCelestialLocation(instant: Instant): CelestialLocation {
val julianDate = computeJulianDate(instant)
//number of days (positive or negative) since Greenwich noon, Terrestrial Time, on 1 January 2000 (J2000.0)
val numDays = julianDate - 2451545
val meanLongitude = Angle.normalizeAngle360(280.460 + 0.9856474 * numDays)
val meanAnomaly = Angle.toRadians(Angle.normalizeAngle360(357.528 + 0.9856003 * numDays))
val eclipticLongitude = meanLongitude + 1.915 * sin(meanAnomaly) + 0.02 * sin(2 * meanAnomaly)
val eclipticLongitudeRad = Angle.toRadians(eclipticLongitude)
val obliquityOfTheEcliptic = Angle.toRadians(23.439 - 0.0000004 * numDays)
val declination = asin(sin(obliquityOfTheEcliptic) * sin(eclipticLongitudeRad)).radians
var rightAscension = atan(cos(obliquityOfTheEcliptic) * tan(eclipticLongitudeRad)).radians
if (eclipticLongitude >= 90 && eclipticLongitude < 270) rightAscension += Angle.POS180
return CelestialLocation(declination, rightAscension.normalize360())
}
/**
* Converts from celestial coordinates (declination and right ascension) to geographic coordinates
* (latitude, longitude) for a given julian date
* @param celestialLocation Celestial location
* @param instant Input instant
* @return the geographic location
*/
fun celestialToGeographic(celestialLocation: CelestialLocation, instant: Instant): Location {
val julianDate = computeJulianDate(instant)
//number of days (positive or negative) since Greenwich noon, Terrestrial Time, on 1 January 2000 (J2000.0)
val numDays = julianDate - 2451545
//Greenwich Mean Sidereal Time
val GMST = Angle.normalizeAngle360(280.46061837 + 360.98564736629 * numDays)
//Greenwich Hour Angle
val GHA = Angle.normalizeAngle360(GMST - celestialLocation.rightAscension.inDegrees)
val longitude = (-GHA).degrees.normalizeLongitude()
return Location(celestialLocation.declination, longitude)
}
/**
* Computes the julian date from a javascript date object
* @param instant Input instant
* @return the julian date
*/
fun computeJulianDate(instant: Instant): Double {
val date = instant.toLocalDateTime(TimeZone.UTC)
var year = date.year
var month = date.monthNumber + 1
val day = date.dayOfMonth
val hour = date.hour
val minute = date.minute
val second = date.second
val dayFraction = (hour + minute / 60.0 + second / 3600.0) / 24.0
if (month <= 2) {
year -= 1
month += 12
}
val a = floor(year / 100.0)
val b = 2 - a + floor(a / 4.0)
val JD0h = floor(365.25 * (year + 4716)) + floor(30.6001 * (month + 1)) + day + b - 1524.5
return JD0h + dayFraction
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy