Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
package org.maltparserx.ml.lib;
import java.io.BufferedOutputStream;
import java.io.BufferedReader;
import java.io.FileOutputStream;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.PrintStream;
import java.util.LinkedHashMap;
import de.bwaldvogel.liblinear.FeatureNode;
import de.bwaldvogel.liblinear.Linear;
import de.bwaldvogel.liblinear.Model;
import de.bwaldvogel.liblinear.Parameter;
import de.bwaldvogel.liblinear.Problem;
import de.bwaldvogel.liblinear.SolverType;
import org.maltparserx.core.exception.MaltChainedException;
import org.maltparserx.core.feature.FeatureVector;
import org.maltparserx.core.helper.NoPrintStream;
import org.maltparserx.core.helper.Util;
import org.maltparserx.parser.guide.instance.InstanceModel;
public class LibLinear extends Lib {
public LibLinear(InstanceModel owner, Integer learnerMode) throws MaltChainedException {
super(owner, learnerMode, "liblinear");
if (learnerMode == CLASSIFY) {
try {
ObjectInputStream input = new ObjectInputStream(getInputStreamFromConfigFileEntry(".moo"));
try {
model = (MaltLibModel)input.readObject();
} finally {
input.close();
}
} catch (ClassNotFoundException e) {
throw new LibException("Couldn't load the liblinear model", e);
} catch (Exception e) {
throw new LibException("Couldn't load the liblinear model", e);
}
}
}
protected void trainInternal(FeatureVector featureVector) throws MaltChainedException {
if (configLogger.isInfoEnabled()) {
configLogger.info("Creating Liblinear model "+getFile(".moo").getName()+"\n");
}
double[] wmodel = null;
int[] labels = null;
int nr_class = 0;
int nr_feature = 0;
Parameter parameter = getLiblinearParameters();
try {
Problem problem = readProblem(getInstanceInputStreamReader(".ins"));
boolean res = checkProblem(problem);
if (res == false) {
throw new LibException("Abort (The number of training instances * the number of classes) > "+Integer.MAX_VALUE+" and this is not supported by LibLinear. ");
}
if (configLogger.isInfoEnabled()) {
owner.getGuide().getConfiguration().getConfigLogger().info("- Train a parser model using LibLinear.\n");
}
final PrintStream out = System.out;
final PrintStream err = System.err;
System.setOut(NoPrintStream.NO_PRINTSTREAM);
System.setErr(NoPrintStream.NO_PRINTSTREAM);
Model model = Linear.train(problem, parameter);
System.setOut(err);
System.setOut(out);
problem = null;
wmodel = model.getFeatureWeights();
labels = model.getLabels();
nr_class = model.getNrClass();
nr_feature = model.getNrFeature();
if (!saveInstanceFiles) {
getFile(".ins").delete();
}
} catch (OutOfMemoryError e) {
throw new LibException("Out of memory. Please increase the Java heap size (-Xmx). ", e);
} catch (IllegalArgumentException e) {
throw new LibException("The Liblinear learner was not able to redirect Standard Error stream. ", e);
} catch (SecurityException e) {
throw new LibException("The Liblinear learner cannot remove the instance file. ", e);
} catch (NegativeArraySizeException e) {
throw new LibException("(The number of training instances * the number of classes) > "+Integer.MAX_VALUE+" and this is not supported by LibLinear.", e);
}
if (configLogger.isInfoEnabled()) {
configLogger.info("- Optimize the memory usage\n");
}
MaltLiblinearModel xmodel = null;
try {
// System.out.println("Nr Features:" + nr_feature);
// System.out.println("nr_class:" + nr_class);
// System.out.println("wmodel.length:" + wmodel.length);
double[][] wmatrix = convert2(wmodel, nr_class, nr_feature);
xmodel = new MaltLiblinearModel(labels, nr_class, wmatrix.length, wmatrix, parameter.getSolverType());
if (configLogger.isInfoEnabled()) {
configLogger.info("- Save the Liblinear model "+getFile(".moo").getName()+"\n");
}
} catch (OutOfMemoryError e) {
throw new LibException("Out of memory. Please increase the Java heap size (-Xmx). ", e);
}
try {
if (xmodel != null) {
ObjectOutputStream output = new ObjectOutputStream (new BufferedOutputStream(new FileOutputStream(getFile(".moo").getAbsolutePath())));
try{
output.writeObject(xmodel);
} finally {
output.close();
}
}
} catch (OutOfMemoryError e) {
throw new LibException("Out of memory. Please increase the Java heap size (-Xmx). ", e);
} catch (IllegalArgumentException e) {
throw new LibException("The Liblinear learner was not able to redirect Standard Error stream. ", e);
} catch (SecurityException e) {
throw new LibException("The Liblinear learner cannot remove the instance file. ", e);
} catch (IOException e) {
throw new LibException("The Liblinear learner cannot save the model file '"+getFile(".mod").getAbsolutePath()+"'. ", e);
}
}
private double[][] convert2(double[] w, int nr_class, int nr_feature) {
int[] wlength = new int[nr_feature];
int nr_nfeature = 0;
// int ne = 0;
// int nr = 0;
// int no = 0;
// int n = 0;
// Identify length of new weight array for each feature
for (int i = 0; i < nr_feature; i++) {
int k = nr_class;
for (int t = i * nr_class; (t + (k - 1)) >= t; k--) {
if (w[t + k - 1] != 0.0) {
break;
}
}
int b = k;
if (b != 0) {
for (int t = i * nr_class; (t + (b - 1)) >= t; b--) {
if (b != k) {
if (w[t + b - 1] != w[t + b]) {
break;
}
}
}
}
if (k == 0 || b == 0) {
wlength[i] = 0;
} else {
wlength[i] = k;
nr_nfeature++;
}
}
// Allocate the weight matrix with the new number of features and
// an array wsignature that efficient compare if weight vector can be reused by another feature.
double[][] wmatrix = new double[nr_nfeature][];
double[] wsignature = new double[nr_nfeature];
Long[] reverseMap = featureMap.reverseMap();
int in = 0;
for (int i = 0; i < nr_feature; i++) {
if (wlength[i] == 0) {
// if the length of the weight vector is zero than eliminate the feature from the feature map.
// ne++;
featureMap.removeIndex(reverseMap[i + 1]);
reverseMap[i + 1] = null;
} else {
boolean reuse = false;
double[] copy = new double[wlength[i]];
System.arraycopy(w, i * nr_class, copy, 0, wlength[i]);
featureMap.setIndex(reverseMap[i + 1], in + 1);
for (int j=0; j= t; k--) {
if (w[t + k - 1] != 0.0) {
break;
}
}
double[] copy = new double[k];
System.arraycopy(w, i * nr_class, copy, 0,k);
if (eliminate(copy)) {
ne++;
featureMap.removeIndex(reverseMap[i + 1]);
reverseMap[i + 1] = null;
wmatrix[i] = null;
} else {
featureMap.setIndex(reverseMap[i + 1], i + 1 - ne);
for (int j=0; j). ", e);
}
}
public void terminate() throws MaltChainedException {
super.terminate();
}
public void initLibOptions() {
libOptions = new LinkedHashMap();
libOptions.put("s", "4"); // type = SolverType.L2LOSS_SVM_DUAL (default)
libOptions.put("c", "0.1"); // cost = 1 (default)
libOptions.put("e", "0.1"); // epsilon = 0.1 (default)
libOptions.put("B", "-1"); // bias = -1 (default)
}
public void initAllowedLibOptionFlags() {
allowedLibOptionFlags = "sceB";
}
private Problem readProblem(InputStreamReader isr) throws MaltChainedException {
Problem problem = new Problem();
final FeatureList featureList = new FeatureList();
if (configLogger.isInfoEnabled()) {
owner.getGuide().getConfiguration().getConfigLogger().info("- Read all training instances.\n");
}
try {
final BufferedReader fp = new BufferedReader(isr);
problem.bias = -1;
problem.l = getNumberOfInstances();
problem.x = new FeatureNode[problem.l][];
problem.y = new double[problem.l];
int i = 0;
while(true) {
String line = fp.readLine();
if(line == null) break;
int y = binariesInstance(line, featureList);
if (y == -1) {
continue;
}
try {
problem.y[i] = y;
problem.x[i] = new FeatureNode[featureList.size()];
int p = 0;
for (int k=0; k < featureList.size(); k++) {
MaltFeatureNode x = featureList.get(k);
problem.x[i][p++] = new FeatureNode(x.getIndex(), x.getValue());
}
i++;
} catch (ArrayIndexOutOfBoundsException e) {
throw new LibException("Couldn't read liblinear problem from the instance file. ", e);
}
}
fp.close();
problem.n = featureMap.size();
} catch (IOException e) {
throw new LibException("Cannot read from the instance file. ", e);
}
return problem;
}
private boolean checkProblem(Problem problem) throws MaltChainedException {
double max_y = problem.y[0];
for (int i = 1; i < problem.y.length; i++) {
if (problem.y[i] > max_y) {
max_y = problem.y[i];
}
}
if (max_y * problem.l < 0) { // max_y * problem.l > Integer.MAX_VALUE
if (configLogger.isInfoEnabled()) {
owner.getGuide().getConfiguration().getConfigLogger().info("*** Abort (The number of training instances * the number of classes) > Max array size: ("+problem.l+" * "+max_y+") > "+Integer.MAX_VALUE+" and this is not supported by LibLinear.\n");
}
return false;
}
return true;
}
private Parameter getLiblinearParameters() throws MaltChainedException {
Parameter param = new Parameter(SolverType.MCSVM_CS, 0.1, 0.1);
String type = libOptions.get("s");
if (type.equals("0")) {
param.setSolverType(SolverType.L2R_LR);
} else if (type.equals("1")) {
param.setSolverType(SolverType.L2R_L2LOSS_SVC_DUAL);
} else if (type.equals("2")) {
param.setSolverType(SolverType.L2R_L2LOSS_SVC);
} else if (type.equals("3")) {
param.setSolverType(SolverType.L2R_L1LOSS_SVC_DUAL);
} else if (type.equals("4")) {
param.setSolverType(SolverType.MCSVM_CS);
} else if (type.equals("5")) {
param.setSolverType(SolverType.L1R_L2LOSS_SVC);
} else if (type.equals("6")) {
param.setSolverType(SolverType.L1R_LR);
} else if (type.equals("7")) {
param.setSolverType(SolverType.L2R_LR_DUAL);
} else {
throw new LibException("The liblinear type (-s) is not an integer value between 0 and 4. ");
}
try {
param.setC(Double.valueOf(libOptions.get("c")).doubleValue());
} catch (NumberFormatException e) {
throw new LibException("The liblinear cost (-c) value is not numerical value. ", e);
}
try {
param.setEps(Double.valueOf(libOptions.get("e")).doubleValue());
} catch (NumberFormatException e) {
throw new LibException("The liblinear epsilon (-e) value is not numerical value. ", e);
}
return param;
}
}