All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.maltparserx.ml.lib.MaltLiblinearModel Maven / Gradle / Ivy

package org.maltparserx.ml.lib;

import java.io.BufferedReader;
import java.io.EOFException;
import java.io.File;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.InputStreamReader;
import java.io.ObjectInputStream;
import java.io.ObjectOutputStream;
import java.io.Reader;
import java.io.Serializable;
import java.nio.charset.Charset;
import java.util.Arrays;
import java.util.regex.Pattern;

import org.maltparserx.core.helper.Util;

import de.bwaldvogel.liblinear.SolverType;

/**
 * 

This class borrows code from liblinear.Model.java of the Java implementation of the liblinear package. * MaltLiblinearModel stores the model obtained from the training procedure. In addition to the original code the model is more integrated to * MaltParser. Instead of moving features from MaltParser's internal data structures to liblinear's data structure it uses MaltParser's data * structure directly on the model.

* * @author Johan Hall * */ public class MaltLiblinearModel implements Serializable, MaltLibModel { private static final long serialVersionUID = 7526471155622776147L; private static final Charset FILE_CHARSET = Charset.forName("ISO-8859-1"); private double bias; /** label of each class */ private int[] labels; private int nr_class; private int nr_feature; private SolverType solverType; /** feature weight array */ private double[][] w; public MaltLiblinearModel(int[] labels, int nr_class, int nr_feature, double[][] w, SolverType solverType) { this.labels = labels; this.nr_class = nr_class; this.nr_feature = nr_feature; this.w = w; this.solverType = solverType; } public MaltLiblinearModel(Reader inputReader) throws IOException { loadModel(inputReader); } public MaltLiblinearModel(File modelFile) throws IOException { BufferedReader inputReader = new BufferedReader(new InputStreamReader(new FileInputStream(modelFile), FILE_CHARSET)); loadModel(inputReader); } /** * @return number of classes */ public int getNrClass() { return nr_class; } /** * @return number of features */ public int getNrFeature() { return nr_feature; } public int[] getLabels() { return Util.copyOf(labels, nr_class); } /** * The nr_feature*nr_class array w gives feature weights. We use one * against the rest for multi-class classification, so each feature * index corresponds to nr_class weight values. Weights are * organized in the following way * *
    * +------------------+------------------+------------+
    * | nr_class weights | nr_class weights | ...
    * | for 1st feature | for 2nd feature |
    * +------------------+------------------+------------+
    * 
* * If bias >= 0, x becomes [x; bias]. The number of features is * increased by one, so w is a (nr_feature+1)*nr_class array. The * value of bias is stored in the variable bias. * @see #getBias() * @return a copy of the feature weight array as described */ // public double[] getFeatureWeights() { // return Util.copyOf(w, w.length); // } /** * @return true for logistic regression solvers */ public boolean isProbabilityModel() { return (solverType == SolverType.L2R_LR || solverType == SolverType.L2R_LR_DUAL || solverType == SolverType.L1R_LR); } public double getBias() { return bias; } public int[] predict(MaltFeatureNode[] x) { final double[] dec_values = new double[nr_class]; final int[] predictionList = Util.copyOf(labels, nr_class); final int n = (bias >= 0)?nr_feature + 1:nr_feature; // final int nr_w = (nr_class == 2 && solverType != SolverType.MCSVM_CS)?1:nr_class; final int xlen = x.length; // int i; // for (i = 0; i < nr_w; i++) { // dec_values[i] = 0; // } for (int i=0; i < xlen; i++) { if (x[i].index <= n) { final int t = (x[i].index - 1); if (w[t] != null) { for (int j = 0; j < w[t].length; j++) { dec_values[j] += w[t][j] * x[i].value; } } } } double tmpDec; int tmpObj; int lagest; final int nc = nr_class-1; for (int i=0; i < nc; i++) { lagest = i; for (int j=i; j < nr_class; j++) { if (dec_values[j] > dec_values[lagest]) { lagest = j; } } tmpDec = dec_values[lagest]; dec_values[lagest] = dec_values[i]; dec_values[i] = tmpDec; tmpObj = predictionList[lagest]; predictionList[lagest] = predictionList[i]; predictionList[i] = tmpObj; } return predictionList; } private void readObject(ObjectInputStream is) throws ClassNotFoundException, IOException { is.defaultReadObject(); } private void writeObject(ObjectOutputStream os) throws IOException { os.defaultWriteObject(); } private void loadModel(Reader inputReader) throws IOException { labels = null; Pattern whitespace = Pattern.compile("\\s+"); BufferedReader reader = null; if (inputReader instanceof BufferedReader) { reader = (BufferedReader)inputReader; } else { reader = new BufferedReader(inputReader); } try { String line = null; while ((line = reader.readLine()) != null) { String[] split = whitespace.split(line); if (split[0].equals("solver_type")) { SolverType solver = SolverType.valueOf(split[1]); if (solver == null) { throw new RuntimeException("unknown solver type"); } solverType = solver; } else if (split[0].equals("nr_class")) { nr_class = Util.atoi(split[1]); Integer.parseInt(split[1]); } else if (split[0].equals("nr_feature")) { nr_feature = Util.atoi(split[1]); } else if (split[0].equals("bias")) { bias = Util.atof(split[1]); } else if (split[0].equals("w")) { break; } else if (split[0].equals("label")) { labels = new int[nr_class]; for (int i = 0; i < nr_class; i++) { labels[i] = Util.atoi(split[i + 1]); } } else { throw new RuntimeException("unknown text in model file: [" + line + "]"); } } int w_size = nr_feature; if (bias >= 0) w_size++; int nr_w = nr_class; if (nr_class == 2 && solverType != SolverType.MCSVM_CS) nr_w = 1; w = new double[w_size][nr_w]; int[] buffer = new int[128]; for (int i = 0; i < w_size; i++) { for (int j = 0; j < nr_w; j++) { int b = 0; while (true) { int ch = reader.read(); if (ch == -1) { throw new EOFException("unexpected EOF"); } if (ch == ' ') { w[i][j] = Util.atof(new String(buffer, 0, b)); break; } else { buffer[b++] = ch; } } } } } finally { Util.closeQuietly(reader); } } public int hashCode() { final int prime = 31; long temp = Double.doubleToLongBits(bias); int result = prime * 1 + (int)(temp ^ (temp >>> 32)); result = prime * result + Arrays.hashCode(labels); result = prime * result + nr_class; result = prime * result + nr_feature; result = prime * result + ((solverType == null) ? 0 : solverType.hashCode()); for (int i = 0; i < w.length; i++) { result = prime * result + Arrays.hashCode(w[i]); } return result; } public boolean equals(Object obj) { if (this == obj) return true; if (obj == null) return false; if (getClass() != obj.getClass()) return false; MaltLiblinearModel other = (MaltLiblinearModel)obj; if (Double.doubleToLongBits(bias) != Double.doubleToLongBits(other.bias)) return false; if (!Arrays.equals(labels, other.labels)) return false; if (nr_class != other.nr_class) return false; if (nr_feature != other.nr_feature) return false; if (solverType == null) { if (other.solverType != null) return false; } else if (!solverType.equals(other.solverType)) return false; for (int i = 0; i < w.length; i++) { if (other.w.length <= i) return false; if (!Util.equals(w[i], other.w[i])) return false; } return true; } public String toString() { final StringBuilder sb = new StringBuilder("Model"); sb.append(" bias=").append(bias); sb.append(" nr_class=").append(nr_class); sb.append(" nr_feature=").append(nr_feature); sb.append(" solverType=").append(solverType); return sb.toString(); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy