edu.uci.jforestsx.dataset.NumericArray Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package edu.uci.jforestsx.dataset;
import edu.uci.jforestsx.dataset.NumericArrayFactory.NumericArrayType;
import edu.uci.jforestsx.learning.trees.decision.DecisionHistogram;
import edu.uci.jforestsx.learning.trees.regression.RegressionHistogram;
/**
* @author Yasser Ganjisaffar
*/
public abstract class NumericArray implements ByteSerializable {
protected int length;
public NumericArray(int length) {
this.length = length;
}
public int getLength() {
return length;
}
public abstract NumericArrayType getType();
public abstract int getBitsPerItem();
@Override
public abstract int getSizeInBytes();
@Override
public abstract int toByteArray(byte[] arr, int offset);
@Override
public abstract int loadFromByteArray(byte[] arr, int offset);
public abstract int get(int index);
public abstract void set(int index, int value);
public void initHistogram(RegressionHistogram histogram, int numInstancesInLeaf, double[] targets,
double[] weights, int[] indices, int[] instances) {
for (int i = 0; i < numInstancesInLeaf; i++) {
int featureValue = get(instances[indices[i]]);
histogram.perValueCount[featureValue]++;
histogram.perValueWeightedCount[featureValue] += weights[i];
histogram.perValueSumTargets[featureValue] += targets[i] * weights[i];
}
}
public void initHistogram(DecisionHistogram histogram, int numInstancesInLeaf, double[] targets,
double[] weights, int[] indices, int[] instances) {
for (int i = 0; i < numInstancesInLeaf; i++) {
int featureValue = get(instances[indices[i]]);
histogram.perValueCount[featureValue]++;
histogram.perValueWeightedCount[featureValue] += weights[i];
histogram.perValueTargetDist[featureValue][(int)targets[i]] += weights[i];
}
}
public abstract NumericArray getSubSampleNumericArray(int[] indices);
}