edu.uci.jforestsx.learning.trees.CandidateSplitsForLeaf Maven / Gradle / Ivy
/**
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package edu.uci.jforestsx.learning.trees;
import java.util.Random;
import edu.uci.jforestsx.sample.Sample;
import edu.uci.jforestsx.util.ArraysUtil;
/**
* @author Yasser Ganjisaffar
*/
public abstract class CandidateSplitsForLeaf {
protected int leafIdx;
protected int numInstancesInLeaf;
protected double totalWeightedCount;
protected int[] indices;
protected double[] targets;
protected double[] weights;
protected TreeSplit[] bestSplitPerFeature;
protected int[] tempIndices;
public abstract void init(int curLeafIndex, TreeLeafInstances treeLeafInstances, Sample trainSet);
public CandidateSplitsForLeaf(int numFeatures, int numInstances) {
tempIndices = new int[numFeatures];
for (int f = 0; f < numFeatures; f++) {
tempIndices[f] = f;
}
indices = new int[numInstances];
targets = new double[numInstances];
weights = new double[numInstances];
}
public TreeSplit getFeatureSplit(int f) {
return bestSplitPerFeature[f];
}
public int getBestFeature() {
int maxIndex = -1;
double maxGain = Double.NEGATIVE_INFINITY;
for (int f = 0; f < bestSplitPerFeature.length; f++) {
if (bestSplitPerFeature[f].gain > maxGain) {
maxGain = bestSplitPerFeature[f].gain;
maxIndex = f;
}
}
return maxIndex;
}
public int getBestFeature(double splitFraction, Random rnd) {
int maxIndex = -1;
double maxGain = Double.NEGATIVE_INFINITY;
ArraysUtil.shuffle(tempIndices, rnd);
int maxFeaturesToConsider = Math.max((int) (bestSplitPerFeature.length * splitFraction), 1);
int featuresConsidered = 0;
for (int i = 0; i < bestSplitPerFeature.length && featuresConsidered < maxFeaturesToConsider; i++) {
int f = tempIndices[i];
if (!Double.isInfinite(bestSplitPerFeature[f].gain)) {
featuresConsidered++;
if (bestSplitPerFeature[f].gain > maxGain) {
maxGain = bestSplitPerFeature[f].gain;
maxIndex = f;
}
}
}
return maxIndex;
}
public int getLeafIndex() {
return leafIdx;
}
public int getNumInstancesInLeaf() {
return numInstancesInLeaf;
}
public double getTotalWeightedCount() {
return totalWeightedCount;
}
public int[] getIndices() {
return indices;
}
public double[] getTargets() {
return targets;
}
public double[] getWeights() {
return weights;
}
public void init(int curLeafIndex) {
this.leafIdx = curLeafIndex;
for (int f = 0; f < bestSplitPerFeature.length; f++) {
bestSplitPerFeature[f].feature = f;
bestSplitPerFeature[f].gain = Double.NEGATIVE_INFINITY;
}
}
}