All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hr.irb.fastRandomForest.VotesCollector Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    VotesCollector.java
 *    Copyright (C) 2009 Fran Supek
 */

package hr.irb.fastRandomForest;

import java.util.Random;
import weka.classifiers.Classifier;
import weka.core.Instances;
import weka.core.Utils;

import java.util.concurrent.Callable;

/**
 * Used to retrieve the out-of-bag vote of an ensemble classifier for a single
 * instance. In classification, does not return the class distribution but only
 * class index of the dominant class.
 * 

* Implements callable so it can be run in multiple threads. * * @author Fran Supek */ public class VotesCollector implements Callable{ protected final Classifier[] m_Classifiers; protected final int instanceIdx; protected final Instances data; protected final boolean[][] inBag; public VotesCollector(Classifier[] m_Classifiers, int instanceIdx, Instances data, boolean[][] inBag){ this.m_Classifiers = m_Classifiers; this.instanceIdx = instanceIdx; this.data = data; this.inBag = inBag; } /** Determine predictions for a single instance. */ public Double call() throws Exception{ boolean regression = data.classAttribute().isNumeric(); double[] classProbs = null; double regrValue = 0; if ( !regression ) classProbs = new double[data.numClasses()]; int numVotes = 0; for(int treeIdx = 0; treeIdx < m_Classifiers.length; treeIdx++){ if ( inBag[treeIdx][instanceIdx] ) continue; numVotes++; FastRandomTree aTree; if ( m_Classifiers[treeIdx] instanceof FastRandomTree) aTree = (FastRandomTree) m_Classifiers[treeIdx]; else throw new IllegalArgumentException("Only FastRandomTrees accepted in the VotesCollector."); if ( regression ) { double curVote; curVote = aTree.classifyInstance(data.instance(instanceIdx)); regrValue += curVote; } else { double[] curDist = aTree.distributionForInstance(data.instance(instanceIdx)); for(int classIdx = 0; classIdx < curDist.length; classIdx++) classProbs[classIdx] += curDist[classIdx]; } } double vote; if(regression) vote = regrValue / numVotes; // average - for regression else vote = Utils.maxIndex(classProbs); // consensus - for classification return vote; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy