All Downloads are FREE. Search and download functionalities are using the official Maven repository.

hr.irb.fastRandomForest.VotesCollectorDataCache Maven / Gradle / Ivy

/*
 *    This program is free software; you can redistribute it and/or modify
 *    it under the terms of the GNU General Public License as published by
 *    the Free Software Foundation; either version 2 of the License, or
 *    (at your option) any later version.
 *
 *    This program is distributed in the hope that it will be useful,
 *    but WITHOUT ANY WARRANTY; without even the implied warranty of
 *    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 *    GNU General Public License for more details.
 *
 *    You should have received a copy of the GNU General Public License
 *    along with this program; if not, write to the Free Software
 *    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

/*
 *    VotesCollectorDataCache.java
 *    Copyright (C) 2013 Fran Supek
 */

package hr.irb.fastRandomForest;

import java.util.Random;
import weka.classifiers.Classifier;
import weka.core.Instances;
import weka.core.Utils;

import java.util.concurrent.Callable;

/**
 * Used to retrieve the out-of-bag vote of an FastRandomForest classifier for a
 * single instance from a DataCache the forest was trained on. New in 0.99.
 * Used for OOB error calculation and feature importances. 

* * In classification, does not return the class distribution, but only the class * index of the dominant class. *

* Implements callable so it can be run in multiple threads. * * @author Fran Supek */ public class VotesCollectorDataCache implements Callable{ protected final Classifier[] m_Classifiers; protected final int instanceIdx; protected final DataCache data; /** NumTrees x numInstances indicating out-of-bag instances. */ protected final boolean[][] inBag; public VotesCollectorDataCache(Classifier[] m_Classifiers, int instanceIdx, DataCache data, boolean[][] inBag){ this.m_Classifiers = m_Classifiers; this.instanceIdx = instanceIdx; this.data = data; this.inBag = inBag; } /** Determine predictions for a single instance (defined in "instanceIdx"). */ public Double call() throws Exception{ double[] classProbs = null; classProbs = new double[data.numClasses]; int numVotes = 0; for (int treeIdx = 0; treeIdx < m_Classifiers.length; treeIdx++){ if ( inBag[treeIdx][instanceIdx] ) { continue; } numVotes++; FastRandomTree aTree; if ( m_Classifiers[treeIdx] instanceof FastRandomTree) aTree = (FastRandomTree) m_Classifiers[treeIdx]; else throw new IllegalArgumentException("Only FastRandomTrees accepted in the VotesCollector."); double[] curDist; curDist = aTree.distributionForInstanceInDataCache(data, instanceIdx); for(int classIdx = 0; classIdx < curDist.length; classIdx++) { classProbs[classIdx] += curDist[classIdx]; } } double vote; //if(regression) // vote = regrValue / numVotes; // average - for regression //else vote = Utils.maxIndex(classProbs); // consensus - for classification return vote; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy