org.apache.hadoop.hive.ql.udf.generic.GenericUDAFCovariance Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of hive-exec Show documentation
Show all versions of hive-exec Show documentation
Hive is a data warehouse infrastructure built on top of Hadoop see
http://wiki.apache.org/hadoop/Hive
The newest version!
/**
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.hadoop.hive.ql.udf.generic;
import java.util.ArrayList;
import org.apache.commons.logging.Log;
import org.apache.commons.logging.LogFactory;
import org.apache.hadoop.hive.ql.exec.Description;
import org.apache.hadoop.hive.ql.exec.UDFArgumentTypeException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.ql.parse.SemanticException;
import org.apache.hadoop.hive.serde2.io.DoubleWritable;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.PrimitiveObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.StructField;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.DoubleObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.LongObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorUtils;
import org.apache.hadoop.hive.serde2.typeinfo.PrimitiveTypeInfo;
import org.apache.hadoop.hive.serde2.typeinfo.TypeInfo;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.util.StringUtils;
/**
* Compute the covariance covar_pop(x, y), using the following one-pass method
* (ref. "Formulas for Robust, One-Pass Parallel Computation of Covariances and
* Arbitrary-Order Statistical Moments", Philippe Pebay, Sandia Labs):
*
* Incremental:
* n :
* mx_n = mx_(n-1) + [x_n - mx_(n-1)]/n :
* my_n = my_(n-1) + [y_n - my_(n-1)]/n :
* c_n = c_(n-1) + (x_n - mx_(n-1))*(y_n - my_n) :
*
* Merge:
* c_X = c_A + c_B + (mx_A - mx_B)*(my_A - my_B)*n_A*n_B/n_X
*
*/
@Description(name = "covariance,covar_pop",
value = "_FUNC_(x,y) - Returns the population covariance of a set of number pairs",
extended = "The function takes as arguments any pair of numeric types and returns a double.\n"
+ "Any pair with a NULL is ignored. If the function is applied to an empty set, NULL\n"
+ "will be returned. Otherwise, it computes the following:\n"
+ " (SUM(x*y)-SUM(x)*SUM(y)/COUNT(x,y))/COUNT(x,y)\n"
+ "where neither x nor y is null.")
public class GenericUDAFCovariance extends AbstractGenericUDAFResolver {
static final Log LOG = LogFactory.getLog(GenericUDAFCovariance.class.getName());
@Override
public GenericUDAFEvaluator getEvaluator(TypeInfo[] parameters) throws SemanticException {
if (parameters.length != 2) {
throw new UDFArgumentTypeException(parameters.length - 1,
"Exactly two arguments are expected.");
}
if (parameters[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentTypeException(0,
"Only primitive type arguments are accepted but "
+ parameters[0].getTypeName() + " is passed.");
}
if (parameters[1].getCategory() != ObjectInspector.Category.PRIMITIVE) {
throw new UDFArgumentTypeException(1,
"Only primitive type arguments are accepted but "
+ parameters[1].getTypeName() + " is passed.");
}
switch (((PrimitiveTypeInfo) parameters[0]).getPrimitiveCategory()) {
case BYTE:
case SHORT:
case INT:
case LONG:
case FLOAT:
case DOUBLE:
case TIMESTAMP:
case DECIMAL:
switch (((PrimitiveTypeInfo) parameters[1]).getPrimitiveCategory()) {
case BYTE:
case SHORT:
case INT:
case LONG:
case FLOAT:
case DOUBLE:
case TIMESTAMP:
case DECIMAL:
return new GenericUDAFCovarianceEvaluator();
case STRING:
case BOOLEAN:
default:
throw new UDFArgumentTypeException(1,
"Only numeric or string type arguments are accepted but "
+ parameters[1].getTypeName() + " is passed.");
}
case STRING:
case BOOLEAN:
default:
throw new UDFArgumentTypeException(0,
"Only numeric or string type arguments are accepted but "
+ parameters[0].getTypeName() + " is passed.");
}
}
/**
* Evaluate the variance using the algorithm described in
* http://en.wikipedia.org/wiki/Algorithms_for_calculating_variance,
* presumably by Pébay, Philippe (2008), in "Formulas for Robust,
* One-Pass Parallel Computation of Covariances and Arbitrary-Order
* Statistical Moments", Technical Report SAND2008-6212,
* Sandia National Laboratories,
* http://infoserve.sandia.gov/sand_doc/2008/086212.pdf
*
* Incremental:
* n :
* mx_n = mx_(n-1) + [x_n - mx_(n-1)]/n :
* my_n = my_(n-1) + [y_n - my_(n-1)]/n :
* c_n = c_(n-1) + (x_n - mx_(n-1))*(y_n - my_n) :
*
* Merge:
* c_X = c_A + c_B + (mx_A - mx_B)*(my_A - my_B)*n_A*n_B/n_X
*
* This one-pass algorithm is stable.
*
*/
public static class GenericUDAFCovarianceEvaluator extends GenericUDAFEvaluator {
// For PARTIAL1 and COMPLETE
private PrimitiveObjectInspector xInputOI;
private PrimitiveObjectInspector yInputOI;
// For PARTIAL2 and FINAL
private StructObjectInspector soi;
private StructField countField;
private StructField xavgField;
private StructField yavgField;
private StructField covarField;
private LongObjectInspector countFieldOI;
private DoubleObjectInspector xavgFieldOI;
private DoubleObjectInspector yavgFieldOI;
private DoubleObjectInspector covarFieldOI;
// For PARTIAL1 and PARTIAL2
private Object[] partialResult;
// For FINAL and COMPLETE
private DoubleWritable result;
@Override
public ObjectInspector init(Mode m, ObjectInspector[] parameters) throws HiveException {
super.init(m, parameters);
// init input
if (mode == Mode.PARTIAL1 || mode == Mode.COMPLETE) {
assert (parameters.length == 2);
xInputOI = (PrimitiveObjectInspector) parameters[0];
yInputOI = (PrimitiveObjectInspector) parameters[1];
} else {
assert (parameters.length == 1);
soi = (StructObjectInspector) parameters[0];
countField = soi.getStructFieldRef("count");
xavgField = soi.getStructFieldRef("xavg");
yavgField = soi.getStructFieldRef("yavg");
covarField = soi.getStructFieldRef("covar");
countFieldOI =
(LongObjectInspector) countField.getFieldObjectInspector();
xavgFieldOI =
(DoubleObjectInspector) xavgField.getFieldObjectInspector();
yavgFieldOI =
(DoubleObjectInspector) yavgField.getFieldObjectInspector();
covarFieldOI =
(DoubleObjectInspector) covarField.getFieldObjectInspector();
}
// init output
if (mode == Mode.PARTIAL1 || mode == Mode.PARTIAL2) {
// The output of a partial aggregation is a struct containing
// a long count, two double averages, and a double covariance.
ArrayList foi = new ArrayList();
foi.add(PrimitiveObjectInspectorFactory.writableLongObjectInspector);
foi.add(PrimitiveObjectInspectorFactory.writableDoubleObjectInspector);
foi.add(PrimitiveObjectInspectorFactory.writableDoubleObjectInspector);
foi.add(PrimitiveObjectInspectorFactory.writableDoubleObjectInspector);
ArrayList fname = new ArrayList();
fname.add("count");
fname.add("xavg");
fname.add("yavg");
fname.add("covar");
partialResult = new Object[4];
partialResult[0] = new LongWritable(0);
partialResult[1] = new DoubleWritable(0);
partialResult[2] = new DoubleWritable(0);
partialResult[3] = new DoubleWritable(0);
return ObjectInspectorFactory.getStandardStructObjectInspector(fname, foi);
} else {
setResult(new DoubleWritable(0));
return PrimitiveObjectInspectorFactory.writableDoubleObjectInspector;
}
}
static class StdAgg implements AggregationBuffer {
long count; // number n of elements
double xavg; // average of x elements
double yavg; // average of y elements
double covar; // n times the covariance
};
@Override
public AggregationBuffer getNewAggregationBuffer() throws HiveException {
StdAgg result = new StdAgg();
reset(result);
return result;
}
@Override
public void reset(AggregationBuffer agg) throws HiveException {
StdAgg myagg = (StdAgg) agg;
myagg.count = 0;
myagg.xavg = 0;
myagg.yavg = 0;
myagg.covar = 0;
}
private boolean warned = false;
@Override
public void iterate(AggregationBuffer agg, Object[] parameters) throws HiveException {
assert (parameters.length == 2);
Object px = parameters[0];
Object py = parameters[1];
if (px != null && py != null) {
StdAgg myagg = (StdAgg) agg;
double vx = PrimitiveObjectInspectorUtils.getDouble(px, xInputOI);
double vy = PrimitiveObjectInspectorUtils.getDouble(py, yInputOI);
myagg.count++;
myagg.yavg = myagg.yavg + (vy - myagg.yavg) / myagg.count;
if (myagg.count > 1) {
myagg.covar += (vx - myagg.xavg) * (vy - myagg.yavg);
}
myagg.xavg = myagg.xavg + (vx - myagg.xavg) / myagg.count;
}
}
@Override
public Object terminatePartial(AggregationBuffer agg) throws HiveException {
StdAgg myagg = (StdAgg) agg;
((LongWritable) partialResult[0]).set(myagg.count);
((DoubleWritable) partialResult[1]).set(myagg.xavg);
((DoubleWritable) partialResult[2]).set(myagg.yavg);
((DoubleWritable) partialResult[3]).set(myagg.covar);
return partialResult;
}
@Override
public void merge(AggregationBuffer agg, Object partial) throws HiveException {
if (partial != null) {
StdAgg myagg = (StdAgg) agg;
Object partialCount = soi.getStructFieldData(partial, countField);
Object partialXAvg = soi.getStructFieldData(partial, xavgField);
Object partialYAvg = soi.getStructFieldData(partial, yavgField);
Object partialCovar = soi.getStructFieldData(partial, covarField);
long nA = myagg.count;
long nB = countFieldOI.get(partialCount);
if (nA == 0) {
// Just copy the information since there is nothing so far
myagg.count = countFieldOI.get(partialCount);
myagg.xavg = xavgFieldOI.get(partialXAvg);
myagg.yavg = yavgFieldOI.get(partialYAvg);
myagg.covar = covarFieldOI.get(partialCovar);
}
if (nA != 0 && nB != 0) {
// Merge the two partials
double xavgA = myagg.xavg;
double yavgA = myagg.yavg;
double xavgB = xavgFieldOI.get(partialXAvg);
double yavgB = yavgFieldOI.get(partialYAvg);
double covarB = covarFieldOI.get(partialCovar);
myagg.count += nB;
myagg.xavg = (xavgA * nA + xavgB * nB) / myagg.count;
myagg.yavg = (yavgA * nA + yavgB * nB) / myagg.count;
myagg.covar +=
covarB + (xavgA - xavgB) * (yavgA - yavgB) * ((double) (nA * nB) / myagg.count);
}
}
}
@Override
public Object terminate(AggregationBuffer agg) throws HiveException {
StdAgg myagg = (StdAgg) agg;
if (myagg.count == 0) { // SQL standard - return null for zero elements
return null;
} else {
getResult().set(myagg.covar / (myagg.count));
return getResult();
}
}
public void setResult(DoubleWritable result) {
this.result = result;
}
public DoubleWritable getResult() {
return result;
}
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy